/export/starexec/sandbox2/solver/bin/starexec_run_HigherOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. Alphabet: 0 : [] --> nat cons : [nat * list] --> list false : [] --> bool gcd : [nat * nat] --> nat gcdlists : [list * list] --> list if : [bool * nat * nat] --> nat le : [nat * nat] --> bool minus : [nat * nat] --> nat nil : [] --> list s : [nat] --> nat true : [] --> bool zipWith : [nat -> nat -> nat * list * list] --> list Rules: le(0, x) => true le(s(x), 0) => false le(s(x), s(y)) => le(x, y) minus(x, 0) => x minus(s(x), s(y)) => minus(x, y) gcd(0, x) => 0 gcd(s(x), 0) => 0 gcd(s(x), s(y)) => if(le(y, x), s(x), s(y)) if(true, s(x), s(y)) => gcd(minus(x, y), s(y)) if(false, s(x), s(y)) => gcd(minus(y, x), s(x)) zipWith(f, x, nil) => nil zipWith(f, nil, x) => nil zipWith(f, cons(x, y), cons(z, u)) => cons(f x z, zipWith(f, y, u)) gcdlists(x, y) => zipWith(/\z./\u.gcd(z, u), x, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) minus(X, 0) => X minus(s(X), s(Y)) => minus(X, Y) gcd(0, X) => 0 gcd(s(X), 0) => 0 gcd(s(X), s(Y)) => if(le(Y, X), s(X), s(Y)) if(true, s(X), s(Y)) => gcd(minus(X, Y), s(Y)) if(false, s(X), s(Y)) => gcd(minus(Y, X), s(X)) Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed Ce-terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) DependencyPairsProof [EQUIVALENT] || (2) QDP || (3) DependencyGraphProof [EQUIVALENT] || (4) AND || (5) QDP || (6) UsableRulesProof [EQUIVALENT] || (7) QDP || (8) QDPSizeChangeProof [EQUIVALENT] || (9) YES || (10) QDP || (11) UsableRulesProof [EQUIVALENT] || (12) QDP || (13) QDPSizeChangeProof [EQUIVALENT] || (14) YES || (15) QDP || (16) QDPOrderProof [EQUIVALENT] || (17) QDP || (18) DependencyGraphProof [EQUIVALENT] || (19) TRUE || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || gcd(0, %X) -> 0 || gcd(s(%X), 0) -> 0 || gcd(s(%X), s(%Y)) -> if(le(%Y, %X), s(%X), s(%Y)) || if(true, s(%X), s(%Y)) -> gcd(minus(%X, %Y), s(%Y)) || if(false, s(%X), s(%Y)) -> gcd(minus(%Y, %X), s(%X)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || || ---------------------------------------- || || (1) DependencyPairsProof (EQUIVALENT) || Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. || ---------------------------------------- || || (2) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || GCD(s(%X), s(%Y)) -> IF(le(%Y, %X), s(%X), s(%Y)) || GCD(s(%X), s(%Y)) -> LE(%Y, %X) || IF(true, s(%X), s(%Y)) -> GCD(minus(%X, %Y), s(%Y)) || IF(true, s(%X), s(%Y)) -> MINUS(%X, %Y) || IF(false, s(%X), s(%Y)) -> GCD(minus(%Y, %X), s(%X)) || IF(false, s(%X), s(%Y)) -> MINUS(%Y, %X) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || gcd(0, %X) -> 0 || gcd(s(%X), 0) -> 0 || gcd(s(%X), s(%Y)) -> if(le(%Y, %X), s(%X), s(%Y)) || if(true, s(%X), s(%Y)) -> gcd(minus(%X, %Y), s(%Y)) || if(false, s(%X), s(%Y)) -> gcd(minus(%Y, %X), s(%X)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (3) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes. || ---------------------------------------- || || (4) || Complex Obligation (AND) || || ---------------------------------------- || || (5) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || gcd(0, %X) -> 0 || gcd(s(%X), 0) -> 0 || gcd(s(%X), s(%Y)) -> if(le(%Y, %X), s(%X), s(%Y)) || if(true, s(%X), s(%Y)) -> gcd(minus(%X, %Y), s(%Y)) || if(false, s(%X), s(%Y)) -> gcd(minus(%Y, %X), s(%X)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (6) UsableRulesProof (EQUIVALENT) || We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (7) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (8) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || The graph contains the following edges 1 > 1, 2 > 2 || || || ---------------------------------------- || || (9) || YES || || ---------------------------------------- || || (10) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || gcd(0, %X) -> 0 || gcd(s(%X), 0) -> 0 || gcd(s(%X), s(%Y)) -> if(le(%Y, %X), s(%X), s(%Y)) || if(true, s(%X), s(%Y)) -> gcd(minus(%X, %Y), s(%Y)) || if(false, s(%X), s(%Y)) -> gcd(minus(%Y, %X), s(%X)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (11) UsableRulesProof (EQUIVALENT) || We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (12) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (13) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *LE(s(%X), s(%Y)) -> LE(%X, %Y) || The graph contains the following edges 1 > 1, 2 > 2 || || || ---------------------------------------- || || (14) || YES || || ---------------------------------------- || || (15) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || GCD(s(%X), s(%Y)) -> IF(le(%Y, %X), s(%X), s(%Y)) || IF(true, s(%X), s(%Y)) -> GCD(minus(%X, %Y), s(%Y)) || IF(false, s(%X), s(%Y)) -> GCD(minus(%Y, %X), s(%X)) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || gcd(0, %X) -> 0 || gcd(s(%X), 0) -> 0 || gcd(s(%X), s(%Y)) -> if(le(%Y, %X), s(%X), s(%Y)) || if(true, s(%X), s(%Y)) -> gcd(minus(%X, %Y), s(%Y)) || if(false, s(%X), s(%Y)) -> gcd(minus(%Y, %X), s(%X)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (16) QDPOrderProof (EQUIVALENT) || We use the reduction pair processor [LPAR04,JAR06]. || || || The following pairs can be oriented strictly and are deleted. || || IF(true, s(%X), s(%Y)) -> GCD(minus(%X, %Y), s(%Y)) || IF(false, s(%X), s(%Y)) -> GCD(minus(%Y, %X), s(%X)) || The remaining pairs can at least be oriented weakly. || Used ordering: Polynomial interpretation [POLO]: || || POL(0) = 0 || POL(GCD(x_1, x_2)) = 1 + x_1 + x_2 || POL(IF(x_1, x_2, x_3)) = 1 + x_2 + x_3 || POL(false) = 0 || POL(le(x_1, x_2)) = 0 || POL(minus(x_1, x_2)) = x_1 || POL(s(x_1)) = 1 + x_1 || POL(true) = 0 || || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || || || ---------------------------------------- || || (17) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || GCD(s(%X), s(%Y)) -> IF(le(%Y, %X), s(%X), s(%Y)) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || gcd(0, %X) -> 0 || gcd(s(%X), 0) -> 0 || gcd(s(%X), s(%Y)) -> if(le(%Y, %X), s(%X), s(%Y)) || if(true, s(%X), s(%Y)) -> gcd(minus(%X, %Y), s(%Y)) || if(false, s(%X), s(%Y)) -> gcd(minus(%Y, %X), s(%X)) || ~PAIR(%X, %Y) -> %X || ~PAIR(%X, %Y) -> %Y || || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (18) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. || ---------------------------------------- || || (19) || TRUE || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] zipWith#(F, cons(X, Y), cons(Z, U)) =#> zipWith#(F, Y, U) 1] gcdlists#(X, Y) =#> zipWith#(/\x./\y.gcd(x, y), X, Y) 2] gcdlists#(X, Y) =#> gcd#(Z, U) Rules R_0: le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) minus(X, 0) => X minus(s(X), s(Y)) => minus(X, Y) gcd(0, X) => 0 gcd(s(X), 0) => 0 gcd(s(X), s(Y)) => if(le(Y, X), s(X), s(Y)) if(true, s(X), s(Y)) => gcd(minus(X, Y), s(Y)) if(false, s(X), s(Y)) => gcd(minus(Y, X), s(X)) zipWith(F, X, nil) => nil zipWith(F, nil, X) => nil zipWith(F, cons(X, Y), cons(Z, U)) => cons(F X Z, zipWith(F, Y, U)) gcdlists(X, Y) => zipWith(/\x./\y.gcd(x, y), X, Y) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 0 * 2 : This graph has the following strongly connected components: P_1: zipWith#(F, cons(X, Y), cons(Z, U)) =#> zipWith#(F, Y, U) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(zipWith#) = 2 Thus, we can orient the dependency pairs as follows: nu(zipWith#(F, cons(X, Y), cons(Z, U))) = cons(X, Y) |> Y = nu(zipWith#(F, Y, U)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_1, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.