/export/starexec/sandbox/solver/bin/starexec_run_HigherOrder /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. Alphabet: 0 : [] --> a cons : [b * c] --> c d : [a * a] --> c false : [] --> c filter : [b -> c * c] --> c gtr : [a * a] --> c if : [c * c * c] --> c len : [c] --> a nil : [] --> c s : [a] --> a sub : [a * a] --> a true : [] --> c Rules: if(true, x, y) => x if(false, x, y) => y sub(x, 0) => x sub(s(x), s(y)) => sub(x, y) gtr(0, x) => false gtr(s(x), 0) => true gtr(s(x), s(y)) => gtr(x, y) d(x, 0) => true d(s(x), s(y)) => if(gtr(x, y), false, d(s(x), sub(y, x))) len(nil) => 0 len(cons(x, y)) => s(len(y)) filter(f, nil) => nil filter(f, cons(x, y)) => if(f x, cons(x, filter(f, y)), filter(f, y)) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: if(true, X, Y) => X if(false, X, Y) => Y sub(X, 0) => X sub(s(X), s(Y)) => sub(X, Y) gtr(0, X) => false gtr(s(X), 0) => true gtr(s(X), s(Y)) => gtr(X, Y) d(X, 0) => true d(s(X), s(Y)) => if(gtr(X, Y), false, d(s(X), sub(Y, X))) len(nil) => 0 len(cons(X, Y)) => s(len(Y)) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) Overlay + Local Confluence [EQUIVALENT] || (2) QTRS || (3) DependencyPairsProof [EQUIVALENT] || (4) QDP || (5) DependencyGraphProof [EQUIVALENT] || (6) AND || (7) QDP || (8) UsableRulesProof [EQUIVALENT] || (9) QDP || (10) QReductionProof [EQUIVALENT] || (11) QDP || (12) QDPSizeChangeProof [EQUIVALENT] || (13) YES || (14) QDP || (15) UsableRulesProof [EQUIVALENT] || (16) QDP || (17) QReductionProof [EQUIVALENT] || (18) QDP || (19) QDPSizeChangeProof [EQUIVALENT] || (20) YES || (21) QDP || (22) UsableRulesProof [EQUIVALENT] || (23) QDP || (24) QReductionProof [EQUIVALENT] || (25) QDP || (26) QDPSizeChangeProof [EQUIVALENT] || (27) YES || (28) QDP || (29) UsableRulesProof [EQUIVALENT] || (30) QDP || (31) QReductionProof [EQUIVALENT] || (32) QDP || (33) QDPOrderProof [EQUIVALENT] || (34) QDP || (35) PisEmptyProof [EQUIVALENT] || (36) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || if(true, %X, %Y) -> %X || if(false, %X, %Y) -> %Y || sub(%X, 0) -> %X || sub(s(%X), s(%Y)) -> sub(%X, %Y) || gtr(0, %X) -> false || gtr(s(%X), 0) -> true || gtr(s(%X), s(%Y)) -> gtr(%X, %Y) || d(%X, 0) -> true || d(s(%X), s(%Y)) -> if(gtr(%X, %Y), false, d(s(%X), sub(%Y, %X))) || len(nil) -> 0 || len(cons(%X, %Y)) -> s(len(%Y)) || || Q is empty. || || ---------------------------------------- || || (1) Overlay + Local Confluence (EQUIVALENT) || The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || if(true, %X, %Y) -> %X || if(false, %X, %Y) -> %Y || sub(%X, 0) -> %X || sub(s(%X), s(%Y)) -> sub(%X, %Y) || gtr(0, %X) -> false || gtr(s(%X), 0) -> true || gtr(s(%X), s(%Y)) -> gtr(%X, %Y) || d(%X, 0) -> true || d(s(%X), s(%Y)) -> if(gtr(%X, %Y), false, d(s(%X), sub(%Y, %X))) || len(nil) -> 0 || len(cons(%X, %Y)) -> s(len(%Y)) || || The set Q consists of the following terms: || || if(true, x0, x1) || if(false, x0, x1) || sub(x0, 0) || sub(s(x0), s(x1)) || gtr(0, x0) || gtr(s(x0), 0) || gtr(s(x0), s(x1)) || d(x0, 0) || d(s(x0), s(x1)) || len(nil) || len(cons(x0, x1)) || || || ---------------------------------------- || || (3) DependencyPairsProof (EQUIVALENT) || Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. || ---------------------------------------- || || (4) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || SUB(s(%X), s(%Y)) -> SUB(%X, %Y) || GTR(s(%X), s(%Y)) -> GTR(%X, %Y) || D(s(%X), s(%Y)) -> IF(gtr(%X, %Y), false, d(s(%X), sub(%Y, %X))) || D(s(%X), s(%Y)) -> GTR(%X, %Y) || D(s(%X), s(%Y)) -> D(s(%X), sub(%Y, %X)) || D(s(%X), s(%Y)) -> SUB(%Y, %X) || LEN(cons(%X, %Y)) -> LEN(%Y) || || The TRS R consists of the following rules: || || if(true, %X, %Y) -> %X || if(false, %X, %Y) -> %Y || sub(%X, 0) -> %X || sub(s(%X), s(%Y)) -> sub(%X, %Y) || gtr(0, %X) -> false || gtr(s(%X), 0) -> true || gtr(s(%X), s(%Y)) -> gtr(%X, %Y) || d(%X, 0) -> true || d(s(%X), s(%Y)) -> if(gtr(%X, %Y), false, d(s(%X), sub(%Y, %X))) || len(nil) -> 0 || len(cons(%X, %Y)) -> s(len(%Y)) || || The set Q consists of the following terms: || || if(true, x0, x1) || if(false, x0, x1) || sub(x0, 0) || sub(s(x0), s(x1)) || gtr(0, x0) || gtr(s(x0), 0) || gtr(s(x0), s(x1)) || d(x0, 0) || d(s(x0), s(x1)) || len(nil) || len(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (5) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 3 less nodes. || ---------------------------------------- || || (6) || Complex Obligation (AND) || || ---------------------------------------- || || (7) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LEN(cons(%X, %Y)) -> LEN(%Y) || || The TRS R consists of the following rules: || || if(true, %X, %Y) -> %X || if(false, %X, %Y) -> %Y || sub(%X, 0) -> %X || sub(s(%X), s(%Y)) -> sub(%X, %Y) || gtr(0, %X) -> false || gtr(s(%X), 0) -> true || gtr(s(%X), s(%Y)) -> gtr(%X, %Y) || d(%X, 0) -> true || d(s(%X), s(%Y)) -> if(gtr(%X, %Y), false, d(s(%X), sub(%Y, %X))) || len(nil) -> 0 || len(cons(%X, %Y)) -> s(len(%Y)) || || The set Q consists of the following terms: || || if(true, x0, x1) || if(false, x0, x1) || sub(x0, 0) || sub(s(x0), s(x1)) || gtr(0, x0) || gtr(s(x0), 0) || gtr(s(x0), s(x1)) || d(x0, 0) || d(s(x0), s(x1)) || len(nil) || len(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (8) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (9) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LEN(cons(%X, %Y)) -> LEN(%Y) || || R is empty. || The set Q consists of the following terms: || || if(true, x0, x1) || if(false, x0, x1) || sub(x0, 0) || sub(s(x0), s(x1)) || gtr(0, x0) || gtr(s(x0), 0) || gtr(s(x0), s(x1)) || d(x0, 0) || d(s(x0), s(x1)) || len(nil) || len(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (10) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || if(true, x0, x1) || if(false, x0, x1) || sub(x0, 0) || sub(s(x0), s(x1)) || gtr(0, x0) || gtr(s(x0), 0) || gtr(s(x0), s(x1)) || d(x0, 0) || d(s(x0), s(x1)) || len(nil) || len(cons(x0, x1)) || || || ---------------------------------------- || || (11) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LEN(cons(%X, %Y)) -> LEN(%Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (12) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *LEN(cons(%X, %Y)) -> LEN(%Y) || The graph contains the following edges 1 > 1 || || || ---------------------------------------- || || (13) || YES || || ---------------------------------------- || || (14) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || GTR(s(%X), s(%Y)) -> GTR(%X, %Y) || || The TRS R consists of the following rules: || || if(true, %X, %Y) -> %X || if(false, %X, %Y) -> %Y || sub(%X, 0) -> %X || sub(s(%X), s(%Y)) -> sub(%X, %Y) || gtr(0, %X) -> false || gtr(s(%X), 0) -> true || gtr(s(%X), s(%Y)) -> gtr(%X, %Y) || d(%X, 0) -> true || d(s(%X), s(%Y)) -> if(gtr(%X, %Y), false, d(s(%X), sub(%Y, %X))) || len(nil) -> 0 || len(cons(%X, %Y)) -> s(len(%Y)) || || The set Q consists of the following terms: || || if(true, x0, x1) || if(false, x0, x1) || sub(x0, 0) || sub(s(x0), s(x1)) || gtr(0, x0) || gtr(s(x0), 0) || gtr(s(x0), s(x1)) || d(x0, 0) || d(s(x0), s(x1)) || len(nil) || len(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (15) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (16) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || GTR(s(%X), s(%Y)) -> GTR(%X, %Y) || || R is empty. || The set Q consists of the following terms: || || if(true, x0, x1) || if(false, x0, x1) || sub(x0, 0) || sub(s(x0), s(x1)) || gtr(0, x0) || gtr(s(x0), 0) || gtr(s(x0), s(x1)) || d(x0, 0) || d(s(x0), s(x1)) || len(nil) || len(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (17) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || if(true, x0, x1) || if(false, x0, x1) || sub(x0, 0) || sub(s(x0), s(x1)) || gtr(0, x0) || gtr(s(x0), 0) || gtr(s(x0), s(x1)) || d(x0, 0) || d(s(x0), s(x1)) || len(nil) || len(cons(x0, x1)) || || || ---------------------------------------- || || (18) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || GTR(s(%X), s(%Y)) -> GTR(%X, %Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (19) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *GTR(s(%X), s(%Y)) -> GTR(%X, %Y) || The graph contains the following edges 1 > 1, 2 > 2 || || || ---------------------------------------- || || (20) || YES || || ---------------------------------------- || || (21) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || SUB(s(%X), s(%Y)) -> SUB(%X, %Y) || || The TRS R consists of the following rules: || || if(true, %X, %Y) -> %X || if(false, %X, %Y) -> %Y || sub(%X, 0) -> %X || sub(s(%X), s(%Y)) -> sub(%X, %Y) || gtr(0, %X) -> false || gtr(s(%X), 0) -> true || gtr(s(%X), s(%Y)) -> gtr(%X, %Y) || d(%X, 0) -> true || d(s(%X), s(%Y)) -> if(gtr(%X, %Y), false, d(s(%X), sub(%Y, %X))) || len(nil) -> 0 || len(cons(%X, %Y)) -> s(len(%Y)) || || The set Q consists of the following terms: || || if(true, x0, x1) || if(false, x0, x1) || sub(x0, 0) || sub(s(x0), s(x1)) || gtr(0, x0) || gtr(s(x0), 0) || gtr(s(x0), s(x1)) || d(x0, 0) || d(s(x0), s(x1)) || len(nil) || len(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (22) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (23) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || SUB(s(%X), s(%Y)) -> SUB(%X, %Y) || || R is empty. || The set Q consists of the following terms: || || if(true, x0, x1) || if(false, x0, x1) || sub(x0, 0) || sub(s(x0), s(x1)) || gtr(0, x0) || gtr(s(x0), 0) || gtr(s(x0), s(x1)) || d(x0, 0) || d(s(x0), s(x1)) || len(nil) || len(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (24) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || if(true, x0, x1) || if(false, x0, x1) || sub(x0, 0) || sub(s(x0), s(x1)) || gtr(0, x0) || gtr(s(x0), 0) || gtr(s(x0), s(x1)) || d(x0, 0) || d(s(x0), s(x1)) || len(nil) || len(cons(x0, x1)) || || || ---------------------------------------- || || (25) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || SUB(s(%X), s(%Y)) -> SUB(%X, %Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (26) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *SUB(s(%X), s(%Y)) -> SUB(%X, %Y) || The graph contains the following edges 1 > 1, 2 > 2 || || || ---------------------------------------- || || (27) || YES || || ---------------------------------------- || || (28) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || D(s(%X), s(%Y)) -> D(s(%X), sub(%Y, %X)) || || The TRS R consists of the following rules: || || if(true, %X, %Y) -> %X || if(false, %X, %Y) -> %Y || sub(%X, 0) -> %X || sub(s(%X), s(%Y)) -> sub(%X, %Y) || gtr(0, %X) -> false || gtr(s(%X), 0) -> true || gtr(s(%X), s(%Y)) -> gtr(%X, %Y) || d(%X, 0) -> true || d(s(%X), s(%Y)) -> if(gtr(%X, %Y), false, d(s(%X), sub(%Y, %X))) || len(nil) -> 0 || len(cons(%X, %Y)) -> s(len(%Y)) || || The set Q consists of the following terms: || || if(true, x0, x1) || if(false, x0, x1) || sub(x0, 0) || sub(s(x0), s(x1)) || gtr(0, x0) || gtr(s(x0), 0) || gtr(s(x0), s(x1)) || d(x0, 0) || d(s(x0), s(x1)) || len(nil) || len(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (29) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (30) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || D(s(%X), s(%Y)) -> D(s(%X), sub(%Y, %X)) || || The TRS R consists of the following rules: || || sub(%X, 0) -> %X || sub(s(%X), s(%Y)) -> sub(%X, %Y) || || The set Q consists of the following terms: || || if(true, x0, x1) || if(false, x0, x1) || sub(x0, 0) || sub(s(x0), s(x1)) || gtr(0, x0) || gtr(s(x0), 0) || gtr(s(x0), s(x1)) || d(x0, 0) || d(s(x0), s(x1)) || len(nil) || len(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (31) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || if(true, x0, x1) || if(false, x0, x1) || gtr(0, x0) || gtr(s(x0), 0) || gtr(s(x0), s(x1)) || d(x0, 0) || d(s(x0), s(x1)) || len(nil) || len(cons(x0, x1)) || || || ---------------------------------------- || || (32) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || D(s(%X), s(%Y)) -> D(s(%X), sub(%Y, %X)) || || The TRS R consists of the following rules: || || sub(%X, 0) -> %X || sub(s(%X), s(%Y)) -> sub(%X, %Y) || || The set Q consists of the following terms: || || sub(x0, 0) || sub(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (33) QDPOrderProof (EQUIVALENT) || We use the reduction pair processor [LPAR04,JAR06]. || || || The following pairs can be oriented strictly and are deleted. || || D(s(%X), s(%Y)) -> D(s(%X), sub(%Y, %X)) || The remaining pairs can at least be oriented weakly. || Used ordering: Polynomial interpretation [POLO]: || || POL(0) = 0 || POL(D(x_1, x_2)) = x_2 || POL(s(x_1)) = 1 + x_1 || POL(sub(x_1, x_2)) = x_1 || || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: || || sub(%X, 0) -> %X || sub(s(%X), s(%Y)) -> sub(%X, %Y) || || || ---------------------------------------- || || (34) || Obligation: || Q DP problem: || P is empty. || The TRS R consists of the following rules: || || sub(%X, 0) -> %X || sub(s(%X), s(%Y)) -> sub(%X, %Y) || || The set Q consists of the following terms: || || sub(x0, 0) || sub(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (35) PisEmptyProof (EQUIVALENT) || The TRS P is empty. Hence, there is no (P,Q,R) chain. || ---------------------------------------- || || (36) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] filter#(F, cons(X, Y)) =#> if#(F X, cons(X, filter(F, Y)), filter(F, Y)) 1] filter#(F, cons(X, Y)) =#> filter#(F, Y) 2] filter#(F, cons(X, Y)) =#> filter#(F, Y) Rules R_0: if(true, X, Y) => X if(false, X, Y) => Y sub(X, 0) => X sub(s(X), s(Y)) => sub(X, Y) gtr(0, X) => false gtr(s(X), 0) => true gtr(s(X), s(Y)) => gtr(X, Y) d(X, 0) => true d(s(X), s(Y)) => if(gtr(X, Y), false, d(s(X), sub(Y, X))) len(nil) => 0 len(cons(X, Y)) => s(len(Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => if(F X, cons(X, filter(F, Y)), filter(F, Y)) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : 0, 1, 2 * 2 : 0, 1, 2 This graph has the following strongly connected components: P_1: filter#(F, cons(X, Y)) =#> filter#(F, Y) filter#(F, cons(X, Y)) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter#(F, Y)) nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter#(F, Y)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_1, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.