/export/starexec/sandbox/solver/bin/starexec_run_HigherOrder /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. Alphabet: append : [a * a] --> a combine : [a * a] --> a cons : [a * a] --> a levels : [] --> a -> a map : [a -> a * a] --> a nil : [] --> a node : [a * a] --> a zip : [a * a] --> a Rules: map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) append(x, nil) => x append(nil, x) => x append(cons(x, y), z) => cons(x, append(y, z)) zip(nil, x) => x zip(x, nil) => x zip(cons(x, y), cons(z, u)) => cons(append(x, z), zip(y, u)) combine(x, nil) => x combine(x, cons(y, z)) => combine(zip(x, y), z) levels node(x, y) => cons(cons(x, nil), combine(nil, map(levels, y))) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): map(F, nil) >? nil map(F, cons(X, Y)) >? cons(F X, map(F, Y)) append(X, nil) >? X append(nil, X) >? X append(cons(X, Y), Z) >? cons(X, append(Y, Z)) zip(nil, X) >? X zip(X, nil) >? X zip(cons(X, Y), cons(Z, U)) >? cons(append(X, Z), zip(Y, U)) combine(X, nil) >? X combine(X, cons(Y, Z)) >? combine(zip(X, Y), Z) levels node(X, Y) >? cons(cons(X, nil), combine(nil, map(levels, Y))) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: append = \y0y1.y0 + y1 combine = \y0y1.y0 + y1 cons = \y0y1.1 + y0 + y1 levels = \y0.0 map = \G0y1.2y1 + 2y1G0(y1) + 2G0(0) nil = 0 node = \y0y1.3 + 3y0 + 3y1 zip = \y0y1.y0 + y1 Using this interpretation, the requirements translate to: [[map(_F0, nil)]] = 2F0(0) >= 0 = [[nil]] [[map(_F0, cons(_x1, _x2))]] = 2 + 2x1 + 2x2 + 2x1F0(1 + x1 + x2) + 2x2F0(1 + x1 + x2) + 2F0(0) + 2F0(1 + x1 + x2) > 1 + x1 + 2x2 + F0(x1) + 2x2F0(x2) + 2F0(0) = [[cons(_F0 _x1, map(_F0, _x2))]] [[append(_x0, nil)]] = x0 >= x0 = [[_x0]] [[append(nil, _x0)]] = x0 >= x0 = [[_x0]] [[append(cons(_x0, _x1), _x2)]] = 1 + x0 + x1 + x2 >= 1 + x0 + x1 + x2 = [[cons(_x0, append(_x1, _x2))]] [[zip(nil, _x0)]] = x0 >= x0 = [[_x0]] [[zip(_x0, nil)]] = x0 >= x0 = [[_x0]] [[zip(cons(_x0, _x1), cons(_x2, _x3))]] = 2 + x0 + x1 + x2 + x3 > 1 + x0 + x1 + x2 + x3 = [[cons(append(_x0, _x2), zip(_x1, _x3))]] [[combine(_x0, nil)]] = x0 >= x0 = [[_x0]] [[combine(_x0, cons(_x1, _x2))]] = 1 + x0 + x1 + x2 > x0 + x1 + x2 = [[combine(zip(_x0, _x1), _x2)]] [[levels node(_x0, _x1)]] = 3 + 3x0 + 3x1 > 2 + x0 + 2x1 = [[cons(cons(_x0, nil), combine(nil, map(levels, _x1)))]] We can thus remove the following rules: map(F, cons(X, Y)) => cons(F X, map(F, Y)) zip(cons(X, Y), cons(Z, U)) => cons(append(X, Z), zip(Y, U)) combine(X, cons(Y, Z)) => combine(zip(X, Y), Z) levels node(X, Y) => cons(cons(X, nil), combine(nil, map(levels, Y))) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): map(F, nil) >? nil append(X, nil) >? X append(nil, X) >? X append(cons(X, Y), Z) >? cons(X, append(Y, Z)) zip(nil, X) >? X zip(X, nil) >? X combine(X, nil) >? X We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: append = \y0y1.3 + y1 + 3y0 combine = \y0y1.3 + y0 + y1 cons = \y0y1.3 + y0 + y1 map = \G0y1.3 + 3y1 + G0(0) nil = 0 zip = \y0y1.3 + y0 + y1 Using this interpretation, the requirements translate to: [[map(_F0, nil)]] = 3 + F0(0) > 0 = [[nil]] [[append(_x0, nil)]] = 3 + 3x0 > x0 = [[_x0]] [[append(nil, _x0)]] = 3 + x0 > x0 = [[_x0]] [[append(cons(_x0, _x1), _x2)]] = 12 + x2 + 3x0 + 3x1 > 6 + x0 + x2 + 3x1 = [[cons(_x0, append(_x1, _x2))]] [[zip(nil, _x0)]] = 3 + x0 > x0 = [[_x0]] [[zip(_x0, nil)]] = 3 + x0 > x0 = [[_x0]] [[combine(_x0, nil)]] = 3 + x0 > x0 = [[_x0]] We can thus remove the following rules: map(F, nil) => nil append(X, nil) => X append(nil, X) => X append(cons(X, Y), Z) => cons(X, append(Y, Z)) zip(nil, X) => X zip(X, nil) => X combine(X, nil) => X All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.