/export/starexec/sandbox/solver/bin/starexec_run_HigherOrder /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. Alphabet: 0 : [] --> b cons : [b * c] --> c false : [] --> a filter : [b -> a * c] --> c filter2 : [a * b -> a * b * c] --> c int : [b * b] --> c intlist : [c] --> c map : [b -> b * c] --> c nil : [] --> c s : [b] --> b true : [] --> a Rules: intlist(nil) => nil intlist(cons(x, y)) => cons(s(x), intlist(y)) int(0, 0) => cons(0, nil) int(0, s(x)) => cons(0, int(s(0), s(x))) int(s(x), 0) => nil int(s(x), s(y)) => intlist(int(x, y)) map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) filter(f, nil) => nil filter(f, cons(x, y)) => filter2(f x, f, x, y) filter2(true, f, x, y) => cons(x, filter(f, y)) filter2(false, f, x, y) => filter(f, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: intlist(nil) => nil intlist(cons(X, Y)) => cons(s(X), intlist(Y)) int(0, 0) => cons(0, nil) int(0, s(X)) => cons(0, int(s(0), s(X))) int(s(X), 0) => nil int(s(X), s(Y)) => intlist(int(X, Y)) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) QTRSRRRProof [EQUIVALENT] || (2) QTRS || (3) QTRSRRRProof [EQUIVALENT] || (4) QTRS || (5) Overlay + Local Confluence [EQUIVALENT] || (6) QTRS || (7) DependencyPairsProof [EQUIVALENT] || (8) QDP || (9) DependencyGraphProof [EQUIVALENT] || (10) AND || (11) QDP || (12) UsableRulesProof [EQUIVALENT] || (13) QDP || (14) QReductionProof [EQUIVALENT] || (15) QDP || (16) QDPSizeChangeProof [EQUIVALENT] || (17) YES || (18) QDP || (19) UsableRulesProof [EQUIVALENT] || (20) QDP || (21) QReductionProof [EQUIVALENT] || (22) QDP || (23) QDPSizeChangeProof [EQUIVALENT] || (24) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || intlist(nil) -> nil || intlist(cons(%X, %Y)) -> cons(s(%X), intlist(%Y)) || int(0, 0) -> cons(0, nil) || int(0, s(%X)) -> cons(0, int(s(0), s(%X))) || int(s(%X), 0) -> nil || int(s(%X), s(%Y)) -> intlist(int(%X, %Y)) || || Q is empty. || || ---------------------------------------- || || (1) QTRSRRRProof (EQUIVALENT) || Used ordering: || Polynomial interpretation [POLO]: || || POL(0) = 0 || POL(cons(x_1, x_2)) = 2*x_1 + x_2 || POL(int(x_1, x_2)) = 1 + 2*x_1 + x_2 || POL(intlist(x_1)) = x_1 || POL(nil) = 0 || POL(s(x_1)) = x_1 || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || int(0, 0) -> cons(0, nil) || int(s(%X), 0) -> nil || || || || || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || intlist(nil) -> nil || intlist(cons(%X, %Y)) -> cons(s(%X), intlist(%Y)) || int(0, s(%X)) -> cons(0, int(s(0), s(%X))) || int(s(%X), s(%Y)) -> intlist(int(%X, %Y)) || || Q is empty. || || ---------------------------------------- || || (3) QTRSRRRProof (EQUIVALENT) || Used ordering: || Polynomial interpretation [POLO]: || || POL(0) = 0 || POL(cons(x_1, x_2)) = 2*x_1 + x_2 || POL(int(x_1, x_2)) = 2*x_1 + x_2 || POL(intlist(x_1)) = 2*x_1 || POL(nil) = 2 || POL(s(x_1)) = 2*x_1 || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: || || intlist(nil) -> nil || || || || || ---------------------------------------- || || (4) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || intlist(cons(%X, %Y)) -> cons(s(%X), intlist(%Y)) || int(0, s(%X)) -> cons(0, int(s(0), s(%X))) || int(s(%X), s(%Y)) -> intlist(int(%X, %Y)) || || Q is empty. || || ---------------------------------------- || || (5) Overlay + Local Confluence (EQUIVALENT) || The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. || ---------------------------------------- || || (6) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || intlist(cons(%X, %Y)) -> cons(s(%X), intlist(%Y)) || int(0, s(%X)) -> cons(0, int(s(0), s(%X))) || int(s(%X), s(%Y)) -> intlist(int(%X, %Y)) || || The set Q consists of the following terms: || || intlist(cons(x0, x1)) || int(0, s(x0)) || int(s(x0), s(x1)) || || || ---------------------------------------- || || (7) DependencyPairsProof (EQUIVALENT) || Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. || ---------------------------------------- || || (8) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || INTLIST(cons(%X, %Y)) -> INTLIST(%Y) || INT(0, s(%X)) -> INT(s(0), s(%X)) || INT(s(%X), s(%Y)) -> INTLIST(int(%X, %Y)) || INT(s(%X), s(%Y)) -> INT(%X, %Y) || || The TRS R consists of the following rules: || || intlist(cons(%X, %Y)) -> cons(s(%X), intlist(%Y)) || int(0, s(%X)) -> cons(0, int(s(0), s(%X))) || int(s(%X), s(%Y)) -> intlist(int(%X, %Y)) || || The set Q consists of the following terms: || || intlist(cons(x0, x1)) || int(0, s(x0)) || int(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (9) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node. || ---------------------------------------- || || (10) || Complex Obligation (AND) || || ---------------------------------------- || || (11) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || INTLIST(cons(%X, %Y)) -> INTLIST(%Y) || || The TRS R consists of the following rules: || || intlist(cons(%X, %Y)) -> cons(s(%X), intlist(%Y)) || int(0, s(%X)) -> cons(0, int(s(0), s(%X))) || int(s(%X), s(%Y)) -> intlist(int(%X, %Y)) || || The set Q consists of the following terms: || || intlist(cons(x0, x1)) || int(0, s(x0)) || int(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (12) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (13) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || INTLIST(cons(%X, %Y)) -> INTLIST(%Y) || || R is empty. || The set Q consists of the following terms: || || intlist(cons(x0, x1)) || int(0, s(x0)) || int(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (14) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || intlist(cons(x0, x1)) || int(0, s(x0)) || int(s(x0), s(x1)) || || || ---------------------------------------- || || (15) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || INTLIST(cons(%X, %Y)) -> INTLIST(%Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (16) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *INTLIST(cons(%X, %Y)) -> INTLIST(%Y) || The graph contains the following edges 1 > 1 || || || ---------------------------------------- || || (17) || YES || || ---------------------------------------- || || (18) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || INT(s(%X), s(%Y)) -> INT(%X, %Y) || INT(0, s(%X)) -> INT(s(0), s(%X)) || || The TRS R consists of the following rules: || || intlist(cons(%X, %Y)) -> cons(s(%X), intlist(%Y)) || int(0, s(%X)) -> cons(0, int(s(0), s(%X))) || int(s(%X), s(%Y)) -> intlist(int(%X, %Y)) || || The set Q consists of the following terms: || || intlist(cons(x0, x1)) || int(0, s(x0)) || int(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (19) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (20) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || INT(s(%X), s(%Y)) -> INT(%X, %Y) || INT(0, s(%X)) -> INT(s(0), s(%X)) || || R is empty. || The set Q consists of the following terms: || || intlist(cons(x0, x1)) || int(0, s(x0)) || int(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (21) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || intlist(cons(x0, x1)) || int(0, s(x0)) || int(s(x0), s(x1)) || || || ---------------------------------------- || || (22) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || INT(s(%X), s(%Y)) -> INT(%X, %Y) || INT(0, s(%X)) -> INT(s(0), s(%X)) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (23) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *INT(s(%X), s(%Y)) -> INT(%X, %Y) || The graph contains the following edges 1 > 1, 2 > 2 || || || *INT(0, s(%X)) -> INT(s(0), s(%X)) || The graph contains the following edges 2 >= 2 || || || ---------------------------------------- || || (24) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> map#(F, Y) 1] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 2] filter2#(true, F, X, Y) =#> filter#(F, Y) 3] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: intlist(nil) => nil intlist(cons(X, Y)) => cons(s(X), intlist(Y)) int(0, 0) => cons(0, nil) int(0, s(X)) => cons(0, int(s(0), s(X))) int(s(X), 0) => nil int(s(X), s(Y)) => intlist(int(X, Y)) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 2, 3 * 2 : 1 * 3 : 1 This graph has the following strongly connected components: P_1: map#(F, cons(X, Y)) =#> map#(F, Y) P_2: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, minimal, formative) and (P_2, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(filter2#) = 4 nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_2, R_0, minimal, f) by (P_3, R_0, minimal, f), where P_3 contains: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if each of (P_1, R_0, minimal, formative) and (P_3, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_1, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.