/export/starexec/sandbox2/solver/bin/starexec_run_HigherOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. Alphabet: 0 : [] --> b cons : [b * c] --> c eq : [b * b] --> a false : [] --> a filter : [b -> a * c] --> c filter2 : [a * b -> a * b * c] --> c if!fac6220min : [a * c] --> b if!fac6220replace : [a * b * b * c] --> c le : [b * b] --> a map : [b -> b * c] --> c min : [c] --> b nil : [] --> c replace : [b * b * c] --> c s : [b] --> b sort : [c] --> c true : [] --> a Rules: eq(0, 0) => true eq(0, s(x)) => false eq(s(x), 0) => false eq(s(x), s(y)) => eq(x, y) le(0, x) => true le(s(x), 0) => false le(s(x), s(y)) => le(x, y) min(cons(0, nil)) => 0 min(cons(s(x), nil)) => s(x) min(cons(x, cons(y, z))) => if!fac6220min(le(x, y), cons(x, cons(y, z))) if!fac6220min(true, cons(x, cons(y, z))) => min(cons(x, z)) if!fac6220min(false, cons(x, cons(y, z))) => min(cons(y, z)) replace(x, y, nil) => nil replace(x, y, cons(z, u)) => if!fac6220replace(eq(x, z), x, y, cons(z, u)) if!fac6220replace(true, x, y, cons(z, u)) => cons(y, u) if!fac6220replace(false, x, y, cons(z, u)) => cons(z, replace(x, y, u)) sort(nil) => nil sort(cons(x, y)) => cons(min(cons(x, y)), sort(replace(min(cons(x, y)), x, y))) map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) filter(f, nil) => nil filter(f, cons(x, y)) => filter2(f x, f, x, y) filter2(true, f, x, y) => cons(x, filter(f, y)) filter2(false, f, x, y) => filter(f, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: eq(0, 0) => true eq(0, s(X)) => false eq(s(X), 0) => false eq(s(X), s(Y)) => eq(X, Y) le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) min(cons(0, nil)) => 0 min(cons(s(X), nil)) => s(X) min(cons(X, cons(Y, Z))) => if!fac6220min(le(X, Y), cons(X, cons(Y, Z))) if!fac6220min(true, cons(X, cons(Y, Z))) => min(cons(X, Z)) if!fac6220min(false, cons(X, cons(Y, Z))) => min(cons(Y, Z)) replace(X, Y, nil) => nil replace(X, Y, cons(Z, U)) => if!fac6220replace(eq(X, Z), X, Y, cons(Z, U)) if!fac6220replace(true, X, Y, cons(Z, U)) => cons(Y, U) if!fac6220replace(false, X, Y, cons(Z, U)) => cons(Z, replace(X, Y, U)) sort(nil) => nil sort(cons(X, Y)) => cons(min(cons(X, Y)), sort(replace(min(cons(X, Y)), X, Y))) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) Overlay + Local Confluence [EQUIVALENT] || (2) QTRS || (3) DependencyPairsProof [EQUIVALENT] || (4) QDP || (5) DependencyGraphProof [EQUIVALENT] || (6) AND || (7) QDP || (8) UsableRulesProof [EQUIVALENT] || (9) QDP || (10) QReductionProof [EQUIVALENT] || (11) QDP || (12) QDPSizeChangeProof [EQUIVALENT] || (13) YES || (14) QDP || (15) UsableRulesProof [EQUIVALENT] || (16) QDP || (17) QReductionProof [EQUIVALENT] || (18) QDP || (19) QDPOrderProof [EQUIVALENT] || (20) QDP || (21) DependencyGraphProof [EQUIVALENT] || (22) TRUE || (23) QDP || (24) UsableRulesProof [EQUIVALENT] || (25) QDP || (26) QReductionProof [EQUIVALENT] || (27) QDP || (28) QDPSizeChangeProof [EQUIVALENT] || (29) YES || (30) QDP || (31) UsableRulesProof [EQUIVALENT] || (32) QDP || (33) QReductionProof [EQUIVALENT] || (34) QDP || (35) QDPSizeChangeProof [EQUIVALENT] || (36) YES || (37) QDP || (38) UsableRulesProof [EQUIVALENT] || (39) QDP || (40) QReductionProof [EQUIVALENT] || (41) QDP || (42) QDPOrderProof [EQUIVALENT] || (43) QDP || (44) PisEmptyProof [EQUIVALENT] || (45) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || min(cons(0, nil)) -> 0 || min(cons(s(%X), nil)) -> s(%X) || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) || replace(%X, %Y, nil) -> nil || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) || sort(nil) -> nil || sort(cons(%X, %Y)) -> cons(min(cons(%X, %Y)), sort(replace(min(cons(%X, %Y)), %X, %Y))) || || Q is empty. || || ---------------------------------------- || || (1) Overlay + Local Confluence (EQUIVALENT) || The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || min(cons(0, nil)) -> 0 || min(cons(s(%X), nil)) -> s(%X) || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) || replace(%X, %Y, nil) -> nil || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) || sort(nil) -> nil || sort(cons(%X, %Y)) -> cons(min(cons(%X, %Y)), sort(replace(min(cons(%X, %Y)), %X, %Y))) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || || ---------------------------------------- || || (3) DependencyPairsProof (EQUIVALENT) || Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. || ---------------------------------------- || || (4) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || EQ(s(%X), s(%Y)) -> EQ(%X, %Y) || LE(s(%X), s(%Y)) -> LE(%X, %Y) || MIN(cons(%X, cons(%Y, %Z))) -> IF!FAC6220MIN(le(%X, %Y), cons(%X, cons(%Y, %Z))) || MIN(cons(%X, cons(%Y, %Z))) -> LE(%X, %Y) || IF!FAC6220MIN(true, cons(%X, cons(%Y, %Z))) -> MIN(cons(%X, %Z)) || IF!FAC6220MIN(false, cons(%X, cons(%Y, %Z))) -> MIN(cons(%Y, %Z)) || REPLACE(%X, %Y, cons(%Z, %U)) -> IF!FAC6220REPLACE(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || REPLACE(%X, %Y, cons(%Z, %U)) -> EQ(%X, %Z) || IF!FAC6220REPLACE(false, %X, %Y, cons(%Z, %U)) -> REPLACE(%X, %Y, %U) || SORT(cons(%X, %Y)) -> MIN(cons(%X, %Y)) || SORT(cons(%X, %Y)) -> SORT(replace(min(cons(%X, %Y)), %X, %Y)) || SORT(cons(%X, %Y)) -> REPLACE(min(cons(%X, %Y)), %X, %Y) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || min(cons(0, nil)) -> 0 || min(cons(s(%X), nil)) -> s(%X) || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) || replace(%X, %Y, nil) -> nil || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) || sort(nil) -> nil || sort(cons(%X, %Y)) -> cons(min(cons(%X, %Y)), sort(replace(min(cons(%X, %Y)), %X, %Y))) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (5) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 4 less nodes. || ---------------------------------------- || || (6) || Complex Obligation (AND) || || ---------------------------------------- || || (7) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || min(cons(0, nil)) -> 0 || min(cons(s(%X), nil)) -> s(%X) || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) || replace(%X, %Y, nil) -> nil || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) || sort(nil) -> nil || sort(cons(%X, %Y)) -> cons(min(cons(%X, %Y)), sort(replace(min(cons(%X, %Y)), %X, %Y))) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (8) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (9) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || R is empty. || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (10) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || || ---------------------------------------- || || (11) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (12) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *LE(s(%X), s(%Y)) -> LE(%X, %Y) || The graph contains the following edges 1 > 1, 2 > 2 || || || ---------------------------------------- || || (13) || YES || || ---------------------------------------- || || (14) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MIN(cons(%X, cons(%Y, %Z))) -> IF!FAC6220MIN(le(%X, %Y), cons(%X, cons(%Y, %Z))) || IF!FAC6220MIN(true, cons(%X, cons(%Y, %Z))) -> MIN(cons(%X, %Z)) || IF!FAC6220MIN(false, cons(%X, cons(%Y, %Z))) -> MIN(cons(%Y, %Z)) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || min(cons(0, nil)) -> 0 || min(cons(s(%X), nil)) -> s(%X) || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) || replace(%X, %Y, nil) -> nil || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) || sort(nil) -> nil || sort(cons(%X, %Y)) -> cons(min(cons(%X, %Y)), sort(replace(min(cons(%X, %Y)), %X, %Y))) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (15) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (16) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MIN(cons(%X, cons(%Y, %Z))) -> IF!FAC6220MIN(le(%X, %Y), cons(%X, cons(%Y, %Z))) || IF!FAC6220MIN(true, cons(%X, cons(%Y, %Z))) -> MIN(cons(%X, %Z)) || IF!FAC6220MIN(false, cons(%X, cons(%Y, %Z))) -> MIN(cons(%Y, %Z)) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (17) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || || ---------------------------------------- || || (18) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MIN(cons(%X, cons(%Y, %Z))) -> IF!FAC6220MIN(le(%X, %Y), cons(%X, cons(%Y, %Z))) || IF!FAC6220MIN(true, cons(%X, cons(%Y, %Z))) -> MIN(cons(%X, %Z)) || IF!FAC6220MIN(false, cons(%X, cons(%Y, %Z))) -> MIN(cons(%Y, %Z)) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (19) QDPOrderProof (EQUIVALENT) || We use the reduction pair processor [LPAR04,JAR06]. || || || The following pairs can be oriented strictly and are deleted. || || IF!FAC6220MIN(true, cons(%X, cons(%Y, %Z))) -> MIN(cons(%X, %Z)) || IF!FAC6220MIN(false, cons(%X, cons(%Y, %Z))) -> MIN(cons(%Y, %Z)) || The remaining pairs can at least be oriented weakly. || Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: || || POL( IF!FAC6220MIN_2(x_1, x_2) ) = max{0, 2x_1 + 2x_2 - 2} || POL( le_2(x_1, x_2) ) = 2 || POL( 0 ) = 2 || POL( true ) = 0 || POL( s_1(x_1) ) = 2 || POL( false ) = 0 || POL( MIN_1(x_1) ) = 2x_1 + 2 || POL( cons_2(x_1, x_2) ) = x_1 + 2x_2 + 2 || || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || || ---------------------------------------- || || (20) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MIN(cons(%X, cons(%Y, %Z))) -> IF!FAC6220MIN(le(%X, %Y), cons(%X, cons(%Y, %Z))) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (21) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. || ---------------------------------------- || || (22) || TRUE || || ---------------------------------------- || || (23) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || EQ(s(%X), s(%Y)) -> EQ(%X, %Y) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || min(cons(0, nil)) -> 0 || min(cons(s(%X), nil)) -> s(%X) || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) || replace(%X, %Y, nil) -> nil || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) || sort(nil) -> nil || sort(cons(%X, %Y)) -> cons(min(cons(%X, %Y)), sort(replace(min(cons(%X, %Y)), %X, %Y))) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (24) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (25) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || EQ(s(%X), s(%Y)) -> EQ(%X, %Y) || || R is empty. || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (26) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || || ---------------------------------------- || || (27) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || EQ(s(%X), s(%Y)) -> EQ(%X, %Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (28) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *EQ(s(%X), s(%Y)) -> EQ(%X, %Y) || The graph contains the following edges 1 > 1, 2 > 2 || || || ---------------------------------------- || || (29) || YES || || ---------------------------------------- || || (30) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || REPLACE(%X, %Y, cons(%Z, %U)) -> IF!FAC6220REPLACE(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || IF!FAC6220REPLACE(false, %X, %Y, cons(%Z, %U)) -> REPLACE(%X, %Y, %U) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || min(cons(0, nil)) -> 0 || min(cons(s(%X), nil)) -> s(%X) || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) || replace(%X, %Y, nil) -> nil || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) || sort(nil) -> nil || sort(cons(%X, %Y)) -> cons(min(cons(%X, %Y)), sort(replace(min(cons(%X, %Y)), %X, %Y))) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (31) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (32) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || REPLACE(%X, %Y, cons(%Z, %U)) -> IF!FAC6220REPLACE(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || IF!FAC6220REPLACE(false, %X, %Y, cons(%Z, %U)) -> REPLACE(%X, %Y, %U) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (33) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || || ---------------------------------------- || || (34) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || REPLACE(%X, %Y, cons(%Z, %U)) -> IF!FAC6220REPLACE(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || IF!FAC6220REPLACE(false, %X, %Y, cons(%Z, %U)) -> REPLACE(%X, %Y, %U) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (35) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *IF!FAC6220REPLACE(false, %X, %Y, cons(%Z, %U)) -> REPLACE(%X, %Y, %U) || The graph contains the following edges 2 >= 1, 3 >= 2, 4 > 3 || || || *REPLACE(%X, %Y, cons(%Z, %U)) -> IF!FAC6220REPLACE(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || The graph contains the following edges 1 >= 2, 2 >= 3, 3 >= 4 || || || ---------------------------------------- || || (36) || YES || || ---------------------------------------- || || (37) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || SORT(cons(%X, %Y)) -> SORT(replace(min(cons(%X, %Y)), %X, %Y)) || || The TRS R consists of the following rules: || || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || min(cons(0, nil)) -> 0 || min(cons(s(%X), nil)) -> s(%X) || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) || replace(%X, %Y, nil) -> nil || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) || sort(nil) -> nil || sort(cons(%X, %Y)) -> cons(min(cons(%X, %Y)), sort(replace(min(cons(%X, %Y)), %X, %Y))) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (38) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (39) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || SORT(cons(%X, %Y)) -> SORT(replace(min(cons(%X, %Y)), %X, %Y)) || || The TRS R consists of the following rules: || || min(cons(0, nil)) -> 0 || min(cons(s(%X), nil)) -> s(%X) || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) || replace(%X, %Y, nil) -> nil || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || sort(nil) || sort(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (40) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || sort(nil) || sort(cons(x0, x1)) || || || ---------------------------------------- || || (41) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || SORT(cons(%X, %Y)) -> SORT(replace(min(cons(%X, %Y)), %X, %Y)) || || The TRS R consists of the following rules: || || min(cons(0, nil)) -> 0 || min(cons(s(%X), nil)) -> s(%X) || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) || replace(%X, %Y, nil) -> nil || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (42) QDPOrderProof (EQUIVALENT) || We use the reduction pair processor [LPAR04,JAR06]. || || || The following pairs can be oriented strictly and are deleted. || || SORT(cons(%X, %Y)) -> SORT(replace(min(cons(%X, %Y)), %X, %Y)) || The remaining pairs can at least be oriented weakly. || Used ordering: Polynomial interpretation [POLO]: || || POL(0) = 0 || POL(SORT(x_1)) = x_1 || POL(cons(x_1, x_2)) = 1 + x_2 || POL(eq(x_1, x_2)) = 0 || POL(false) = 0 || POL(if!fac6220min(x_1, x_2)) = 0 || POL(if!fac6220replace(x_1, x_2, x_3, x_4)) = x_4 || POL(le(x_1, x_2)) = 0 || POL(min(x_1)) = 0 || POL(nil) = 0 || POL(replace(x_1, x_2, x_3)) = x_3 || POL(s(x_1)) = 0 || POL(true) = 0 || || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: || || replace(%X, %Y, nil) -> nil || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) || || || ---------------------------------------- || || (43) || Obligation: || Q DP problem: || P is empty. || The TRS R consists of the following rules: || || min(cons(0, nil)) -> 0 || min(cons(s(%X), nil)) -> s(%X) || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) || replace(%X, %Y, nil) -> nil || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) || eq(0, 0) -> true || eq(0, s(%X)) -> false || eq(s(%X), 0) -> false || eq(s(%X), s(%Y)) -> eq(%X, %Y) || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || eq(0, 0) || eq(0, s(x0)) || eq(s(x0), 0) || eq(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || min(cons(0, nil)) || min(cons(s(x0), nil)) || min(cons(x0, cons(x1, x2))) || if!fac6220min(true, cons(x0, cons(x1, x2))) || if!fac6220min(false, cons(x0, cons(x1, x2))) || replace(x0, x1, nil) || replace(x0, x1, cons(x2, x3)) || if!fac6220replace(true, x0, x1, cons(x2, x3)) || if!fac6220replace(false, x0, x1, cons(x2, x3)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (44) PisEmptyProof (EQUIVALENT) || The TRS P is empty. Hence, there is no (P,Q,R) chain. || ---------------------------------------- || || (45) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> map#(F, Y) 1] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 2] filter2#(true, F, X, Y) =#> filter#(F, Y) 3] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: eq(0, 0) => true eq(0, s(X)) => false eq(s(X), 0) => false eq(s(X), s(Y)) => eq(X, Y) le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) min(cons(0, nil)) => 0 min(cons(s(X), nil)) => s(X) min(cons(X, cons(Y, Z))) => if!fac6220min(le(X, Y), cons(X, cons(Y, Z))) if!fac6220min(true, cons(X, cons(Y, Z))) => min(cons(X, Z)) if!fac6220min(false, cons(X, cons(Y, Z))) => min(cons(Y, Z)) replace(X, Y, nil) => nil replace(X, Y, cons(Z, U)) => if!fac6220replace(eq(X, Z), X, Y, cons(Z, U)) if!fac6220replace(true, X, Y, cons(Z, U)) => cons(Y, U) if!fac6220replace(false, X, Y, cons(Z, U)) => cons(Z, replace(X, Y, U)) sort(nil) => nil sort(cons(X, Y)) => cons(min(cons(X, Y)), sort(replace(min(cons(X, Y)), X, Y))) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 2, 3 * 2 : 1 * 3 : 1 This graph has the following strongly connected components: P_1: map#(F, cons(X, Y)) =#> map#(F, Y) P_2: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, minimal, formative) and (P_2, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(filter2#) = 4 nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_2, R_0, minimal, f) by (P_3, R_0, minimal, f), where P_3 contains: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if each of (P_1, R_0, minimal, formative) and (P_3, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_1, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.