/export/starexec/sandbox2/solver/bin/starexec_run_HigherOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. Alphabet: 0 : [] --> d cons : [d * d] --> d f : [d] --> a false : [] --> c filter : [d -> c * d] --> d filter2 : [c * d -> c * d * d] --> d g : [d] --> d h : [d] --> b map : [d -> d * d] --> d nil : [] --> d s : [d] --> d true : [] --> c Rules: f(s(x)) => f(x) g(cons(0, x)) => g(x) g(cons(s(x), y)) => s(x) h(cons(x, y)) => h(g(cons(x, y))) map(i, nil) => nil map(i, cons(x, y)) => cons(i x, map(i, y)) filter(i, nil) => nil filter(i, cons(x, y)) => filter2(i x, i, x, y) filter2(true, i, x, y) => cons(x, filter(i, y)) filter2(false, i, x, y) => filter(i, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): f(s(X)) >? f(X) g(cons(0, X)) >? g(X) g(cons(s(X), Y)) >? s(X) h(cons(X, Y)) >? h(g(cons(X, Y))) map(F, nil) >? nil map(F, cons(X, Y)) >? cons(F X, map(F, Y)) filter(F, nil) >? nil filter(F, cons(X, Y)) >? filter2(F X, F, X, Y) filter2(true, F, X, Y) >? cons(X, filter(F, Y)) filter2(false, F, X, Y) >? filter(F, Y) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 3 cons = \y0y1.1 + y0 + y1 f = \y0.2y0 false = 3 filter = \G0y1.2y1 + G0(0) + y1G0(y1) filter2 = \y0G1y2y3.1 + y0 + y2 + 2y3 + G1(0) + y3G1(y3) g = \y0.y0 h = \y0.2y0 map = \G0y1.1 + 3y1 + G0(0) + 2y1G0(y1) nil = 0 s = \y0.2y0 true = 3 Using this interpretation, the requirements translate to: [[f(s(_x0))]] = 4x0 >= 2x0 = [[f(_x0)]] [[g(cons(0, _x0))]] = 4 + x0 > x0 = [[g(_x0)]] [[g(cons(s(_x0), _x1))]] = 1 + x1 + 2x0 > 2x0 = [[s(_x0)]] [[h(cons(_x0, _x1))]] = 2 + 2x0 + 2x1 >= 2 + 2x0 + 2x1 = [[h(g(cons(_x0, _x1)))]] [[map(_F0, nil)]] = 1 + F0(0) > 0 = [[nil]] [[map(_F0, cons(_x1, _x2))]] = 4 + 3x1 + 3x2 + F0(0) + 2x1F0(1 + x1 + x2) + 2x2F0(1 + x1 + x2) + 2F0(1 + x1 + x2) > 2 + x1 + 3x2 + F0(0) + F0(x1) + 2x2F0(x2) = [[cons(_F0 _x1, map(_F0, _x2))]] [[filter(_F0, nil)]] = F0(0) >= 0 = [[nil]] [[filter(_F0, cons(_x1, _x2))]] = 2 + 2x1 + 2x2 + F0(0) + F0(1 + x1 + x2) + x1F0(1 + x1 + x2) + x2F0(1 + x1 + x2) > 1 + 2x1 + 2x2 + F0(0) + F0(x1) + x2F0(x2) = [[filter2(_F0 _x1, _F0, _x1, _x2)]] [[filter2(true, _F0, _x1, _x2)]] = 4 + x1 + 2x2 + F0(0) + x2F0(x2) > 1 + x1 + 2x2 + F0(0) + x2F0(x2) = [[cons(_x1, filter(_F0, _x2))]] [[filter2(false, _F0, _x1, _x2)]] = 4 + x1 + 2x2 + F0(0) + x2F0(x2) > 2x2 + F0(0) + x2F0(x2) = [[filter(_F0, _x2)]] We can thus remove the following rules: g(cons(0, X)) => g(X) g(cons(s(X), Y)) => s(X) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): f(s(X)) >? f(X) h(cons(X, Y)) >? h(g(cons(X, Y))) filter(F, nil) >? nil We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: cons = \y0y1.y0 + y1 f = \y0.y0 filter = \G0y1.3 + 3y1 + G0(0) g = \y0.y0 h = \y0.y0 nil = 0 s = \y0.3 + 3y0 Using this interpretation, the requirements translate to: [[f(s(_x0))]] = 3 + 3x0 > x0 = [[f(_x0)]] [[h(cons(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[h(g(cons(_x0, _x1)))]] [[filter(_F0, nil)]] = 3 + F0(0) > 0 = [[nil]] We can thus remove the following rules: f(s(X)) => f(X) filter(F, nil) => nil We observe that the rules contain a first-order subset: h(cons(X, Y)) => h(g(cons(X, Y))) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) AAECC Innermost [EQUIVALENT] || (2) QTRS || (3) DependencyPairsProof [EQUIVALENT] || (4) QDP || (5) DependencyGraphProof [EQUIVALENT] || (6) TRUE || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || h(cons(%X, %Y)) -> h(g(cons(%X, %Y))) || || Q is empty. || || ---------------------------------------- || || (1) AAECC Innermost (EQUIVALENT) || We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is none || || The TRS R 2 is || h(cons(%X, %Y)) -> h(g(cons(%X, %Y))) || || The signature Sigma is {h_1} || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || h(cons(%X, %Y)) -> h(g(cons(%X, %Y))) || || The set Q consists of the following terms: || || h(cons(x0, x1)) || || || ---------------------------------------- || || (3) DependencyPairsProof (EQUIVALENT) || Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. || ---------------------------------------- || || (4) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || H(cons(%X, %Y)) -> H(g(cons(%X, %Y))) || || The TRS R consists of the following rules: || || h(cons(%X, %Y)) -> h(g(cons(%X, %Y))) || || The set Q consists of the following terms: || || h(cons(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (5) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. || ---------------------------------------- || || (6) || TRUE || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: Rules R_0: h(cons(X, Y)) => h(g(cons(X, Y))) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.