/export/starexec/sandbox/solver/bin/starexec_run_HigherOrder /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. Alphabet: 0 : [] --> b add : [b * c] --> c app : [c * c] --> c false : [] --> a filter : [b -> a * c] --> c filter2 : [a * b -> a * b * c] --> c high : [b * c] --> c if!fac6220high : [a * b * c] --> c if!fac6220low : [a * b * c] --> c le : [b * b] --> a low : [b * c] --> c map : [b -> b * c] --> c minus : [b * b] --> b nil : [] --> c quicksort : [c] --> c quot : [b * b] --> b s : [b] --> b true : [] --> a Rules: minus(x, 0) => x minus(s(x), s(y)) => minus(x, y) quot(0, s(x)) => 0 quot(s(x), s(y)) => s(quot(minus(x, y), s(y))) le(0, x) => true le(s(x), 0) => false le(s(x), s(y)) => le(x, y) app(nil, x) => x app(add(x, y), z) => add(x, app(y, z)) low(x, nil) => nil low(x, add(y, z)) => if!fac6220low(le(y, x), x, add(y, z)) if!fac6220low(true, x, add(y, z)) => add(y, low(x, z)) if!fac6220low(false, x, add(y, z)) => low(x, z) high(x, nil) => nil high(x, add(y, z)) => if!fac6220high(le(y, x), x, add(y, z)) if!fac6220high(true, x, add(y, z)) => high(x, z) if!fac6220high(false, x, add(y, z)) => add(y, high(x, z)) quicksort(nil) => nil quicksort(add(x, y)) => app(quicksort(low(x, y)), add(x, quicksort(high(x, y)))) map(f, nil) => nil map(f, add(x, y)) => add(f x, map(f, y)) filter(f, nil) => nil filter(f, add(x, y)) => filter2(f x, f, x, y) filter2(true, f, x, y) => add(x, filter(f, y)) filter2(false, f, x, y) => filter(f, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: minus(X, 0) => X minus(s(X), s(Y)) => minus(X, Y) quot(0, s(X)) => 0 quot(s(X), s(Y)) => s(quot(minus(X, Y), s(Y))) le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) app(nil, X) => X app(add(X, Y), Z) => add(X, app(Y, Z)) low(X, nil) => nil low(X, add(Y, Z)) => if!fac6220low(le(Y, X), X, add(Y, Z)) if!fac6220low(true, X, add(Y, Z)) => add(Y, low(X, Z)) if!fac6220low(false, X, add(Y, Z)) => low(X, Z) high(X, nil) => nil high(X, add(Y, Z)) => if!fac6220high(le(Y, X), X, add(Y, Z)) if!fac6220high(true, X, add(Y, Z)) => high(X, Z) if!fac6220high(false, X, add(Y, Z)) => add(Y, high(X, Z)) quicksort(nil) => nil quicksort(add(X, Y)) => app(quicksort(low(X, Y)), add(X, quicksort(high(X, Y)))) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) Overlay + Local Confluence [EQUIVALENT] || (2) QTRS || (3) DependencyPairsProof [EQUIVALENT] || (4) QDP || (5) DependencyGraphProof [EQUIVALENT] || (6) AND || (7) QDP || (8) UsableRulesProof [EQUIVALENT] || (9) QDP || (10) QReductionProof [EQUIVALENT] || (11) QDP || (12) QDPSizeChangeProof [EQUIVALENT] || (13) YES || (14) QDP || (15) UsableRulesProof [EQUIVALENT] || (16) QDP || (17) QReductionProof [EQUIVALENT] || (18) QDP || (19) QDPSizeChangeProof [EQUIVALENT] || (20) YES || (21) QDP || (22) UsableRulesProof [EQUIVALENT] || (23) QDP || (24) QReductionProof [EQUIVALENT] || (25) QDP || (26) QDPSizeChangeProof [EQUIVALENT] || (27) YES || (28) QDP || (29) UsableRulesProof [EQUIVALENT] || (30) QDP || (31) QReductionProof [EQUIVALENT] || (32) QDP || (33) QDPSizeChangeProof [EQUIVALENT] || (34) YES || (35) QDP || (36) UsableRulesProof [EQUIVALENT] || (37) QDP || (38) QReductionProof [EQUIVALENT] || (39) QDP || (40) QDPOrderProof [EQUIVALENT] || (41) QDP || (42) UsableRulesProof [EQUIVALENT] || (43) QDP || (44) QReductionProof [EQUIVALENT] || (45) QDP || (46) QDPOrderProof [EQUIVALENT] || (47) QDP || (48) PisEmptyProof [EQUIVALENT] || (49) YES || (50) QDP || (51) UsableRulesProof [EQUIVALENT] || (52) QDP || (53) QReductionProof [EQUIVALENT] || (54) QDP || (55) QDPSizeChangeProof [EQUIVALENT] || (56) YES || (57) QDP || (58) UsableRulesProof [EQUIVALENT] || (59) QDP || (60) QReductionProof [EQUIVALENT] || (61) QDP || (62) QDPOrderProof [EQUIVALENT] || (63) QDP || (64) PisEmptyProof [EQUIVALENT] || (65) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || quicksort(nil) -> nil || quicksort(add(%X, %Y)) -> app(quicksort(low(%X, %Y)), add(%X, quicksort(high(%X, %Y)))) || || Q is empty. || || ---------------------------------------- || || (1) Overlay + Local Confluence (EQUIVALENT) || The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || quicksort(nil) -> nil || quicksort(add(%X, %Y)) -> app(quicksort(low(%X, %Y)), add(%X, quicksort(high(%X, %Y)))) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || || ---------------------------------------- || || (3) DependencyPairsProof (EQUIVALENT) || Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. || ---------------------------------------- || || (4) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || QUOT(s(%X), s(%Y)) -> QUOT(minus(%X, %Y), s(%Y)) || QUOT(s(%X), s(%Y)) -> MINUS(%X, %Y) || LE(s(%X), s(%Y)) -> LE(%X, %Y) || APP(add(%X, %Y), %Z) -> APP(%Y, %Z) || LOW(%X, add(%Y, %Z)) -> IF!FAC6220LOW(le(%Y, %X), %X, add(%Y, %Z)) || LOW(%X, add(%Y, %Z)) -> LE(%Y, %X) || IF!FAC6220LOW(true, %X, add(%Y, %Z)) -> LOW(%X, %Z) || IF!FAC6220LOW(false, %X, add(%Y, %Z)) -> LOW(%X, %Z) || HIGH(%X, add(%Y, %Z)) -> IF!FAC6220HIGH(le(%Y, %X), %X, add(%Y, %Z)) || HIGH(%X, add(%Y, %Z)) -> LE(%Y, %X) || IF!FAC6220HIGH(true, %X, add(%Y, %Z)) -> HIGH(%X, %Z) || IF!FAC6220HIGH(false, %X, add(%Y, %Z)) -> HIGH(%X, %Z) || QUICKSORT(add(%X, %Y)) -> APP(quicksort(low(%X, %Y)), add(%X, quicksort(high(%X, %Y)))) || QUICKSORT(add(%X, %Y)) -> QUICKSORT(low(%X, %Y)) || QUICKSORT(add(%X, %Y)) -> LOW(%X, %Y) || QUICKSORT(add(%X, %Y)) -> QUICKSORT(high(%X, %Y)) || QUICKSORT(add(%X, %Y)) -> HIGH(%X, %Y) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || quicksort(nil) -> nil || quicksort(add(%X, %Y)) -> app(quicksort(low(%X, %Y)), add(%X, quicksort(high(%X, %Y)))) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (5) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 6 less nodes. || ---------------------------------------- || || (6) || Complex Obligation (AND) || || ---------------------------------------- || || (7) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || APP(add(%X, %Y), %Z) -> APP(%Y, %Z) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || quicksort(nil) -> nil || quicksort(add(%X, %Y)) -> app(quicksort(low(%X, %Y)), add(%X, quicksort(high(%X, %Y)))) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (8) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (9) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || APP(add(%X, %Y), %Z) -> APP(%Y, %Z) || || R is empty. || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (10) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || || ---------------------------------------- || || (11) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || APP(add(%X, %Y), %Z) -> APP(%Y, %Z) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (12) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *APP(add(%X, %Y), %Z) -> APP(%Y, %Z) || The graph contains the following edges 1 > 1, 2 >= 2 || || || ---------------------------------------- || || (13) || YES || || ---------------------------------------- || || (14) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || quicksort(nil) -> nil || quicksort(add(%X, %Y)) -> app(quicksort(low(%X, %Y)), add(%X, quicksort(high(%X, %Y)))) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (15) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (16) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || R is empty. || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (17) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || || ---------------------------------------- || || (18) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LE(s(%X), s(%Y)) -> LE(%X, %Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (19) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *LE(s(%X), s(%Y)) -> LE(%X, %Y) || The graph contains the following edges 1 > 1, 2 > 2 || || || ---------------------------------------- || || (20) || YES || || ---------------------------------------- || || (21) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || HIGH(%X, add(%Y, %Z)) -> IF!FAC6220HIGH(le(%Y, %X), %X, add(%Y, %Z)) || IF!FAC6220HIGH(true, %X, add(%Y, %Z)) -> HIGH(%X, %Z) || IF!FAC6220HIGH(false, %X, add(%Y, %Z)) -> HIGH(%X, %Z) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || quicksort(nil) -> nil || quicksort(add(%X, %Y)) -> app(quicksort(low(%X, %Y)), add(%X, quicksort(high(%X, %Y)))) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (22) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (23) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || HIGH(%X, add(%Y, %Z)) -> IF!FAC6220HIGH(le(%Y, %X), %X, add(%Y, %Z)) || IF!FAC6220HIGH(true, %X, add(%Y, %Z)) -> HIGH(%X, %Z) || IF!FAC6220HIGH(false, %X, add(%Y, %Z)) -> HIGH(%X, %Z) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (24) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || || ---------------------------------------- || || (25) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || HIGH(%X, add(%Y, %Z)) -> IF!FAC6220HIGH(le(%Y, %X), %X, add(%Y, %Z)) || IF!FAC6220HIGH(true, %X, add(%Y, %Z)) -> HIGH(%X, %Z) || IF!FAC6220HIGH(false, %X, add(%Y, %Z)) -> HIGH(%X, %Z) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (26) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *HIGH(%X, add(%Y, %Z)) -> IF!FAC6220HIGH(le(%Y, %X), %X, add(%Y, %Z)) || The graph contains the following edges 1 >= 2, 2 >= 3 || || || *IF!FAC6220HIGH(true, %X, add(%Y, %Z)) -> HIGH(%X, %Z) || The graph contains the following edges 2 >= 1, 3 > 2 || || || *IF!FAC6220HIGH(false, %X, add(%Y, %Z)) -> HIGH(%X, %Z) || The graph contains the following edges 2 >= 1, 3 > 2 || || || ---------------------------------------- || || (27) || YES || || ---------------------------------------- || || (28) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LOW(%X, add(%Y, %Z)) -> IF!FAC6220LOW(le(%Y, %X), %X, add(%Y, %Z)) || IF!FAC6220LOW(true, %X, add(%Y, %Z)) -> LOW(%X, %Z) || IF!FAC6220LOW(false, %X, add(%Y, %Z)) -> LOW(%X, %Z) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || quicksort(nil) -> nil || quicksort(add(%X, %Y)) -> app(quicksort(low(%X, %Y)), add(%X, quicksort(high(%X, %Y)))) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (29) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (30) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LOW(%X, add(%Y, %Z)) -> IF!FAC6220LOW(le(%Y, %X), %X, add(%Y, %Z)) || IF!FAC6220LOW(true, %X, add(%Y, %Z)) -> LOW(%X, %Z) || IF!FAC6220LOW(false, %X, add(%Y, %Z)) -> LOW(%X, %Z) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (31) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || || ---------------------------------------- || || (32) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || LOW(%X, add(%Y, %Z)) -> IF!FAC6220LOW(le(%Y, %X), %X, add(%Y, %Z)) || IF!FAC6220LOW(true, %X, add(%Y, %Z)) -> LOW(%X, %Z) || IF!FAC6220LOW(false, %X, add(%Y, %Z)) -> LOW(%X, %Z) || || The TRS R consists of the following rules: || || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || || The set Q consists of the following terms: || || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (33) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *LOW(%X, add(%Y, %Z)) -> IF!FAC6220LOW(le(%Y, %X), %X, add(%Y, %Z)) || The graph contains the following edges 1 >= 2, 2 >= 3 || || || *IF!FAC6220LOW(true, %X, add(%Y, %Z)) -> LOW(%X, %Z) || The graph contains the following edges 2 >= 1, 3 > 2 || || || *IF!FAC6220LOW(false, %X, add(%Y, %Z)) -> LOW(%X, %Z) || The graph contains the following edges 2 >= 1, 3 > 2 || || || ---------------------------------------- || || (34) || YES || || ---------------------------------------- || || (35) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || QUICKSORT(add(%X, %Y)) -> QUICKSORT(high(%X, %Y)) || QUICKSORT(add(%X, %Y)) -> QUICKSORT(low(%X, %Y)) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || quicksort(nil) -> nil || quicksort(add(%X, %Y)) -> app(quicksort(low(%X, %Y)), add(%X, quicksort(high(%X, %Y)))) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (36) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (37) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || QUICKSORT(add(%X, %Y)) -> QUICKSORT(high(%X, %Y)) || QUICKSORT(add(%X, %Y)) -> QUICKSORT(low(%X, %Y)) || || The TRS R consists of the following rules: || || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (38) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || quicksort(nil) || quicksort(add(x0, x1)) || || || ---------------------------------------- || || (39) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || QUICKSORT(add(%X, %Y)) -> QUICKSORT(high(%X, %Y)) || QUICKSORT(add(%X, %Y)) -> QUICKSORT(low(%X, %Y)) || || The TRS R consists of the following rules: || || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || || The set Q consists of the following terms: || || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (40) QDPOrderProof (EQUIVALENT) || We use the reduction pair processor [LPAR04,JAR06]. || || || The following pairs can be oriented strictly and are deleted. || || QUICKSORT(add(%X, %Y)) -> QUICKSORT(high(%X, %Y)) || The remaining pairs can at least be oriented weakly. || Used ordering: Polynomial interpretation [POLO]: || || POL(0) = 0 || POL(QUICKSORT(x_1)) = x_1 || POL(add(x_1, x_2)) = 1 + x_2 || POL(false) = 0 || POL(high(x_1, x_2)) = x_2 || POL(if!fac6220high(x_1, x_2, x_3)) = x_3 || POL(if!fac6220low(x_1, x_2, x_3)) = 1 + x_3 || POL(le(x_1, x_2)) = 0 || POL(low(x_1, x_2)) = 1 + x_2 || POL(nil) = 0 || POL(s(x_1)) = 0 || POL(true) = 0 || || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: || || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || || || ---------------------------------------- || || (41) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || QUICKSORT(add(%X, %Y)) -> QUICKSORT(low(%X, %Y)) || || The TRS R consists of the following rules: || || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || || The set Q consists of the following terms: || || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (42) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (43) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || QUICKSORT(add(%X, %Y)) -> QUICKSORT(low(%X, %Y)) || || The TRS R consists of the following rules: || || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || || The set Q consists of the following terms: || || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (44) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || || || ---------------------------------------- || || (45) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || QUICKSORT(add(%X, %Y)) -> QUICKSORT(low(%X, %Y)) || || The TRS R consists of the following rules: || || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || || The set Q consists of the following terms: || || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (46) QDPOrderProof (EQUIVALENT) || We use the reduction pair processor [LPAR04,JAR06]. || || || The following pairs can be oriented strictly and are deleted. || || QUICKSORT(add(%X, %Y)) -> QUICKSORT(low(%X, %Y)) || The remaining pairs can at least be oriented weakly. || Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: || || POL( QUICKSORT_1(x_1) ) = max{0, 2x_1 - 1} || POL( low_2(x_1, x_2) ) = x_2 || POL( nil ) = 1 || POL( add_2(x_1, x_2) ) = 2x_2 + 2 || POL( if!fac6220low_3(x_1, ..., x_3) ) = max{0, x_1 + x_3 - 2} || POL( le_2(x_1, x_2) ) = 2 || POL( false ) = 0 || POL( 0 ) = 2 || POL( true ) = 2 || POL( s_1(x_1) ) = 2x_1 + 2 || || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: || || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || || || ---------------------------------------- || || (47) || Obligation: || Q DP problem: || P is empty. || The TRS R consists of the following rules: || || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || || The set Q consists of the following terms: || || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (48) PisEmptyProof (EQUIVALENT) || The TRS P is empty. Hence, there is no (P,Q,R) chain. || ---------------------------------------- || || (49) || YES || || ---------------------------------------- || || (50) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || quicksort(nil) -> nil || quicksort(add(%X, %Y)) -> app(quicksort(low(%X, %Y)), add(%X, quicksort(high(%X, %Y)))) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (51) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (52) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || || R is empty. || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (53) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || || ---------------------------------------- || || (54) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (55) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) || The graph contains the following edges 1 > 1, 2 > 2 || || || ---------------------------------------- || || (56) || YES || || ---------------------------------------- || || (57) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || QUOT(s(%X), s(%Y)) -> QUOT(minus(%X, %Y), s(%Y)) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || quot(0, s(%X)) -> 0 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) || le(0, %X) -> true || le(s(%X), 0) -> false || le(s(%X), s(%Y)) -> le(%X, %Y) || app(nil, %X) -> %X || app(add(%X, %Y), %Z) -> add(%X, app(%Y, %Z)) || low(%X, nil) -> nil || low(%X, add(%Y, %Z)) -> if!fac6220low(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220low(true, %X, add(%Y, %Z)) -> add(%Y, low(%X, %Z)) || if!fac6220low(false, %X, add(%Y, %Z)) -> low(%X, %Z) || high(%X, nil) -> nil || high(%X, add(%Y, %Z)) -> if!fac6220high(le(%Y, %X), %X, add(%Y, %Z)) || if!fac6220high(true, %X, add(%Y, %Z)) -> high(%X, %Z) || if!fac6220high(false, %X, add(%Y, %Z)) -> add(%Y, high(%X, %Z)) || quicksort(nil) -> nil || quicksort(add(%X, %Y)) -> app(quicksort(low(%X, %Y)), add(%X, quicksort(high(%X, %Y)))) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (58) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (59) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || QUOT(s(%X), s(%Y)) -> QUOT(minus(%X, %Y), s(%Y)) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (60) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || quot(0, s(x0)) || quot(s(x0), s(x1)) || le(0, x0) || le(s(x0), 0) || le(s(x0), s(x1)) || app(nil, x0) || app(add(x0, x1), x2) || low(x0, nil) || low(x0, add(x1, x2)) || if!fac6220low(true, x0, add(x1, x2)) || if!fac6220low(false, x0, add(x1, x2)) || high(x0, nil) || high(x0, add(x1, x2)) || if!fac6220high(true, x0, add(x1, x2)) || if!fac6220high(false, x0, add(x1, x2)) || quicksort(nil) || quicksort(add(x0, x1)) || || || ---------------------------------------- || || (61) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || QUOT(s(%X), s(%Y)) -> QUOT(minus(%X, %Y), s(%Y)) || || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (62) QDPOrderProof (EQUIVALENT) || We use the reduction pair processor [LPAR04,JAR06]. || || || The following pairs can be oriented strictly and are deleted. || || QUOT(s(%X), s(%Y)) -> QUOT(minus(%X, %Y), s(%Y)) || The remaining pairs can at least be oriented weakly. || Used ordering: Polynomial interpretation [POLO]: || || POL(0) = 0 || POL(QUOT(x_1, x_2)) = x_1 || POL(minus(x_1, x_2)) = x_1 || POL(s(x_1)) = 1 + x_1 || || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || || || ---------------------------------------- || || (63) || Obligation: || Q DP problem: || P is empty. || The TRS R consists of the following rules: || || minus(%X, 0) -> %X || minus(s(%X), s(%Y)) -> minus(%X, %Y) || || The set Q consists of the following terms: || || minus(x0, 0) || minus(s(x0), s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (64) PisEmptyProof (EQUIVALENT) || The TRS P is empty. Hence, there is no (P,Q,R) chain. || ---------------------------------------- || || (65) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] map#(F, add(X, Y)) =#> map#(F, Y) 1] filter#(F, add(X, Y)) =#> filter2#(F X, F, X, Y) 2] filter2#(true, F, X, Y) =#> filter#(F, Y) 3] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: minus(X, 0) => X minus(s(X), s(Y)) => minus(X, Y) quot(0, s(X)) => 0 quot(s(X), s(Y)) => s(quot(minus(X, Y), s(Y))) le(0, X) => true le(s(X), 0) => false le(s(X), s(Y)) => le(X, Y) app(nil, X) => X app(add(X, Y), Z) => add(X, app(Y, Z)) low(X, nil) => nil low(X, add(Y, Z)) => if!fac6220low(le(Y, X), X, add(Y, Z)) if!fac6220low(true, X, add(Y, Z)) => add(Y, low(X, Z)) if!fac6220low(false, X, add(Y, Z)) => low(X, Z) high(X, nil) => nil high(X, add(Y, Z)) => if!fac6220high(le(Y, X), X, add(Y, Z)) if!fac6220high(true, X, add(Y, Z)) => high(X, Z) if!fac6220high(false, X, add(Y, Z)) => add(Y, high(X, Z)) quicksort(nil) => nil quicksort(add(X, Y)) => app(quicksort(low(X, Y)), add(X, quicksort(high(X, Y)))) map(F, nil) => nil map(F, add(X, Y)) => add(F X, map(F, Y)) filter(F, nil) => nil filter(F, add(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => add(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 2, 3 * 2 : 1 * 3 : 1 This graph has the following strongly connected components: P_1: map#(F, add(X, Y)) =#> map#(F, Y) P_2: filter#(F, add(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, minimal, formative) and (P_2, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(filter2#) = 4 nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, add(X, Y))) = add(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_2, R_0, minimal, f) by (P_3, R_0, minimal, f), where P_3 contains: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if each of (P_1, R_0, minimal, formative) and (P_3, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, add(X, Y))) = add(X, Y) |> Y = nu(map#(F, Y)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_1, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.