/export/starexec/sandbox2/solver/bin/starexec_run_HigherOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. Alphabet: !facplus : [a * a] --> a !factimes : [a * a] --> a 0 : [] --> a cons : [c * d] --> d fact : [a] --> a false : [] --> b filter : [c -> b * d] --> d filter2 : [b * c -> b * c * d] --> d map : [c -> c * d] --> d nil : [] --> d p : [a] --> a s : [a] --> a true : [] --> b Rules: p(s(x)) => x fact(0) => s(0) fact(s(x)) => !factimes(s(x), fact(p(s(x)))) !factimes(0, x) => 0 !factimes(s(x), y) => !facplus(!factimes(x, y), y) !facplus(x, 0) => x !facplus(x, s(y)) => s(!facplus(x, y)) map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) filter(f, nil) => nil filter(f, cons(x, y)) => filter2(f x, f, x, y) filter2(true, f, x, y) => cons(x, filter(f, y)) filter2(false, f, x, y) => filter(f, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: p(s(X)) => X fact(0) => s(0) fact(s(X)) => !factimes(s(X), fact(p(s(X)))) !factimes(0, X) => 0 !factimes(s(X), Y) => !facplus(!factimes(X, Y), Y) !facplus(X, 0) => X !facplus(X, s(Y)) => s(!facplus(X, Y)) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) Overlay + Local Confluence [EQUIVALENT] || (2) QTRS || (3) DependencyPairsProof [EQUIVALENT] || (4) QDP || (5) DependencyGraphProof [EQUIVALENT] || (6) AND || (7) QDP || (8) UsableRulesProof [EQUIVALENT] || (9) QDP || (10) QReductionProof [EQUIVALENT] || (11) QDP || (12) QDPSizeChangeProof [EQUIVALENT] || (13) YES || (14) QDP || (15) UsableRulesProof [EQUIVALENT] || (16) QDP || (17) QReductionProof [EQUIVALENT] || (18) QDP || (19) QDPSizeChangeProof [EQUIVALENT] || (20) YES || (21) QDP || (22) UsableRulesProof [EQUIVALENT] || (23) QDP || (24) QReductionProof [EQUIVALENT] || (25) QDP || (26) MRRProof [EQUIVALENT] || (27) QDP || (28) DependencyGraphProof [EQUIVALENT] || (29) TRUE || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || p(s(%X)) -> %X || fact(0) -> s(0) || fact(s(%X)) -> !factimes(s(%X), fact(p(s(%X)))) || !factimes(0, %X) -> 0 || !factimes(s(%X), %Y) -> !facplus(!factimes(%X, %Y), %Y) || !facplus(%X, 0) -> %X || !facplus(%X, s(%Y)) -> s(!facplus(%X, %Y)) || || Q is empty. || || ---------------------------------------- || || (1) Overlay + Local Confluence (EQUIVALENT) || The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || p(s(%X)) -> %X || fact(0) -> s(0) || fact(s(%X)) -> !factimes(s(%X), fact(p(s(%X)))) || !factimes(0, %X) -> 0 || !factimes(s(%X), %Y) -> !facplus(!factimes(%X, %Y), %Y) || !facplus(%X, 0) -> %X || !facplus(%X, s(%Y)) -> s(!facplus(%X, %Y)) || || The set Q consists of the following terms: || || p(s(x0)) || fact(0) || fact(s(x0)) || !factimes(0, x0) || !factimes(s(x0), x1) || !facplus(x0, 0) || !facplus(x0, s(x1)) || || || ---------------------------------------- || || (3) DependencyPairsProof (EQUIVALENT) || Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. || ---------------------------------------- || || (4) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || FACT(s(%X)) -> !FACTIMES(s(%X), fact(p(s(%X)))) || FACT(s(%X)) -> FACT(p(s(%X))) || FACT(s(%X)) -> P(s(%X)) || !FACTIMES(s(%X), %Y) -> !FACPLUS(!factimes(%X, %Y), %Y) || !FACTIMES(s(%X), %Y) -> !FACTIMES(%X, %Y) || !FACPLUS(%X, s(%Y)) -> !FACPLUS(%X, %Y) || || The TRS R consists of the following rules: || || p(s(%X)) -> %X || fact(0) -> s(0) || fact(s(%X)) -> !factimes(s(%X), fact(p(s(%X)))) || !factimes(0, %X) -> 0 || !factimes(s(%X), %Y) -> !facplus(!factimes(%X, %Y), %Y) || !facplus(%X, 0) -> %X || !facplus(%X, s(%Y)) -> s(!facplus(%X, %Y)) || || The set Q consists of the following terms: || || p(s(x0)) || fact(0) || fact(s(x0)) || !factimes(0, x0) || !factimes(s(x0), x1) || !facplus(x0, 0) || !facplus(x0, s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (5) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes. || ---------------------------------------- || || (6) || Complex Obligation (AND) || || ---------------------------------------- || || (7) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || !FACPLUS(%X, s(%Y)) -> !FACPLUS(%X, %Y) || || The TRS R consists of the following rules: || || p(s(%X)) -> %X || fact(0) -> s(0) || fact(s(%X)) -> !factimes(s(%X), fact(p(s(%X)))) || !factimes(0, %X) -> 0 || !factimes(s(%X), %Y) -> !facplus(!factimes(%X, %Y), %Y) || !facplus(%X, 0) -> %X || !facplus(%X, s(%Y)) -> s(!facplus(%X, %Y)) || || The set Q consists of the following terms: || || p(s(x0)) || fact(0) || fact(s(x0)) || !factimes(0, x0) || !factimes(s(x0), x1) || !facplus(x0, 0) || !facplus(x0, s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (8) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (9) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || !FACPLUS(%X, s(%Y)) -> !FACPLUS(%X, %Y) || || R is empty. || The set Q consists of the following terms: || || p(s(x0)) || fact(0) || fact(s(x0)) || !factimes(0, x0) || !factimes(s(x0), x1) || !facplus(x0, 0) || !facplus(x0, s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (10) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || p(s(x0)) || fact(0) || fact(s(x0)) || !factimes(0, x0) || !factimes(s(x0), x1) || !facplus(x0, 0) || !facplus(x0, s(x1)) || || || ---------------------------------------- || || (11) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || !FACPLUS(%X, s(%Y)) -> !FACPLUS(%X, %Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (12) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *!FACPLUS(%X, s(%Y)) -> !FACPLUS(%X, %Y) || The graph contains the following edges 1 >= 1, 2 > 2 || || || ---------------------------------------- || || (13) || YES || || ---------------------------------------- || || (14) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || !FACTIMES(s(%X), %Y) -> !FACTIMES(%X, %Y) || || The TRS R consists of the following rules: || || p(s(%X)) -> %X || fact(0) -> s(0) || fact(s(%X)) -> !factimes(s(%X), fact(p(s(%X)))) || !factimes(0, %X) -> 0 || !factimes(s(%X), %Y) -> !facplus(!factimes(%X, %Y), %Y) || !facplus(%X, 0) -> %X || !facplus(%X, s(%Y)) -> s(!facplus(%X, %Y)) || || The set Q consists of the following terms: || || p(s(x0)) || fact(0) || fact(s(x0)) || !factimes(0, x0) || !factimes(s(x0), x1) || !facplus(x0, 0) || !facplus(x0, s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (15) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (16) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || !FACTIMES(s(%X), %Y) -> !FACTIMES(%X, %Y) || || R is empty. || The set Q consists of the following terms: || || p(s(x0)) || fact(0) || fact(s(x0)) || !factimes(0, x0) || !factimes(s(x0), x1) || !facplus(x0, 0) || !facplus(x0, s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (17) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || p(s(x0)) || fact(0) || fact(s(x0)) || !factimes(0, x0) || !factimes(s(x0), x1) || !facplus(x0, 0) || !facplus(x0, s(x1)) || || || ---------------------------------------- || || (18) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || !FACTIMES(s(%X), %Y) -> !FACTIMES(%X, %Y) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (19) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *!FACTIMES(s(%X), %Y) -> !FACTIMES(%X, %Y) || The graph contains the following edges 1 > 1, 2 >= 2 || || || ---------------------------------------- || || (20) || YES || || ---------------------------------------- || || (21) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || FACT(s(%X)) -> FACT(p(s(%X))) || || The TRS R consists of the following rules: || || p(s(%X)) -> %X || fact(0) -> s(0) || fact(s(%X)) -> !factimes(s(%X), fact(p(s(%X)))) || !factimes(0, %X) -> 0 || !factimes(s(%X), %Y) -> !facplus(!factimes(%X, %Y), %Y) || !facplus(%X, 0) -> %X || !facplus(%X, s(%Y)) -> s(!facplus(%X, %Y)) || || The set Q consists of the following terms: || || p(s(x0)) || fact(0) || fact(s(x0)) || !factimes(0, x0) || !factimes(s(x0), x1) || !facplus(x0, 0) || !facplus(x0, s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (22) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (23) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || FACT(s(%X)) -> FACT(p(s(%X))) || || The TRS R consists of the following rules: || || p(s(%X)) -> %X || || The set Q consists of the following terms: || || p(s(x0)) || fact(0) || fact(s(x0)) || !factimes(0, x0) || !factimes(s(x0), x1) || !facplus(x0, 0) || !facplus(x0, s(x1)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (24) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || fact(0) || fact(s(x0)) || !factimes(0, x0) || !factimes(s(x0), x1) || !facplus(x0, 0) || !facplus(x0, s(x1)) || || || ---------------------------------------- || || (25) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || FACT(s(%X)) -> FACT(p(s(%X))) || || The TRS R consists of the following rules: || || p(s(%X)) -> %X || || The set Q consists of the following terms: || || p(s(x0)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (26) MRRProof (EQUIVALENT) || By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. || || || Strictly oriented rules of the TRS R: || || p(s(%X)) -> %X || || Used ordering: Polynomial interpretation [POLO]: || || POL(FACT(x_1)) = x_1 || POL(p(x_1)) = x_1 || POL(s(x_1)) = 1 + x_1 || || || ---------------------------------------- || || (27) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || FACT(s(%X)) -> FACT(p(s(%X))) || || R is empty. || The set Q consists of the following terms: || || p(s(x0)) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (28) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. || ---------------------------------------- || || (29) || TRUE || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> map#(F, Y) 1] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 2] filter2#(true, F, X, Y) =#> filter#(F, Y) 3] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: p(s(X)) => X fact(0) => s(0) fact(s(X)) => !factimes(s(X), fact(p(s(X)))) !factimes(0, X) => 0 !factimes(s(X), Y) => !facplus(!factimes(X, Y), Y) !facplus(X, 0) => X !facplus(X, s(Y)) => s(!facplus(X, Y)) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 2, 3 * 2 : 1 * 3 : 1 This graph has the following strongly connected components: P_1: map#(F, cons(X, Y)) =#> map#(F, Y) P_2: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, minimal, formative) and (P_2, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(filter2#) = 4 nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_2, R_0, minimal, f) by (P_3, R_0, minimal, f), where P_3 contains: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if each of (P_1, R_0, minimal, formative) and (P_3, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_1, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.