/export/starexec/sandbox2/solver/bin/starexec_run_HigherOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. Alphabet: 0 : [] --> b cons : [d * e] --> e f : [b * b * b * b] --> c false : [] --> c filter : [d -> c * e] --> e filter2 : [c * d -> c * d * e] --> e if : [a * c * c] --> c le : [b * b] --> a map : [d -> d * e] --> e minus : [b * b] --> b nil : [] --> e perfectp : [b] --> c s : [b] --> b true : [] --> c Rules: perfectp(0) => false perfectp(s(x)) => f(x, s(0), s(x), s(x)) f(0, x, 0, y) => true f(0, x, s(y), z) => false f(s(x), 0, y, z) => f(x, z, minus(y, s(x)), z) f(s(x), s(y), z, u) => if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u)) map(g, nil) => nil map(g, cons(x, y)) => cons(g x, map(g, y)) filter(g, nil) => nil filter(g, cons(x, y)) => filter2(g x, g, x, y) filter2(true, g, x, y) => cons(x, filter(g, y)) filter2(false, g, x, y) => filter(g, y) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We observe that the rules contain a first-order subset: perfectp(0) => false perfectp(s(X)) => f(X, s(0), s(X), s(X)) f(0, X, 0, Y) => true f(0, X, s(Y), Z) => false f(s(X), 0, Y, Z) => f(X, Z, minus(Y, s(X)), Z) f(s(X), s(Y), Z, U) => if(le(X, Y), f(s(X), minus(Y, X), Z, U), f(X, U, Z, U)) Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. According to the external first-order termination prover, this system is indeed terminating: || proof of resources/system.trs || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 || || || Termination w.r.t. Q of the given QTRS could be proven: || || (0) QTRS || (1) Overlay + Local Confluence [EQUIVALENT] || (2) QTRS || (3) DependencyPairsProof [EQUIVALENT] || (4) QDP || (5) DependencyGraphProof [EQUIVALENT] || (6) QDP || (7) UsableRulesProof [EQUIVALENT] || (8) QDP || (9) QReductionProof [EQUIVALENT] || (10) QDP || (11) QDPSizeChangeProof [EQUIVALENT] || (12) YES || || || ---------------------------------------- || || (0) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || perfectp(0) -> false || perfectp(s(%X)) -> f(%X, s(0), s(%X), s(%X)) || f(0, %X, 0, %Y) -> true || f(0, %X, s(%Y), %Z) -> false || f(s(%X), 0, %Y, %Z) -> f(%X, %Z, minus(%Y, s(%X)), %Z) || f(s(%X), s(%Y), %Z, %U) -> if(le(%X, %Y), f(s(%X), minus(%Y, %X), %Z, %U), f(%X, %U, %Z, %U)) || || Q is empty. || || ---------------------------------------- || || (1) Overlay + Local Confluence (EQUIVALENT) || The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. || ---------------------------------------- || || (2) || Obligation: || Q restricted rewrite system: || The TRS R consists of the following rules: || || perfectp(0) -> false || perfectp(s(%X)) -> f(%X, s(0), s(%X), s(%X)) || f(0, %X, 0, %Y) -> true || f(0, %X, s(%Y), %Z) -> false || f(s(%X), 0, %Y, %Z) -> f(%X, %Z, minus(%Y, s(%X)), %Z) || f(s(%X), s(%Y), %Z, %U) -> if(le(%X, %Y), f(s(%X), minus(%Y, %X), %Z, %U), f(%X, %U, %Z, %U)) || || The set Q consists of the following terms: || || perfectp(0) || perfectp(s(x0)) || f(0, x0, 0, x1) || f(0, x0, s(x1), x2) || f(s(x0), 0, x1, x2) || f(s(x0), s(x1), x2, x3) || || || ---------------------------------------- || || (3) DependencyPairsProof (EQUIVALENT) || Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. || ---------------------------------------- || || (4) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || PERFECTP(s(%X)) -> F(%X, s(0), s(%X), s(%X)) || F(s(%X), 0, %Y, %Z) -> F(%X, %Z, minus(%Y, s(%X)), %Z) || F(s(%X), s(%Y), %Z, %U) -> F(s(%X), minus(%Y, %X), %Z, %U) || F(s(%X), s(%Y), %Z, %U) -> F(%X, %U, %Z, %U) || || The TRS R consists of the following rules: || || perfectp(0) -> false || perfectp(s(%X)) -> f(%X, s(0), s(%X), s(%X)) || f(0, %X, 0, %Y) -> true || f(0, %X, s(%Y), %Z) -> false || f(s(%X), 0, %Y, %Z) -> f(%X, %Z, minus(%Y, s(%X)), %Z) || f(s(%X), s(%Y), %Z, %U) -> if(le(%X, %Y), f(s(%X), minus(%Y, %X), %Z, %U), f(%X, %U, %Z, %U)) || || The set Q consists of the following terms: || || perfectp(0) || perfectp(s(x0)) || f(0, x0, 0, x1) || f(0, x0, s(x1), x2) || f(s(x0), 0, x1, x2) || f(s(x0), s(x1), x2, x3) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (5) DependencyGraphProof (EQUIVALENT) || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. || ---------------------------------------- || || (6) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || F(s(%X), s(%Y), %Z, %U) -> F(%X, %U, %Z, %U) || F(s(%X), 0, %Y, %Z) -> F(%X, %Z, minus(%Y, s(%X)), %Z) || || The TRS R consists of the following rules: || || perfectp(0) -> false || perfectp(s(%X)) -> f(%X, s(0), s(%X), s(%X)) || f(0, %X, 0, %Y) -> true || f(0, %X, s(%Y), %Z) -> false || f(s(%X), 0, %Y, %Z) -> f(%X, %Z, minus(%Y, s(%X)), %Z) || f(s(%X), s(%Y), %Z, %U) -> if(le(%X, %Y), f(s(%X), minus(%Y, %X), %Z, %U), f(%X, %U, %Z, %U)) || || The set Q consists of the following terms: || || perfectp(0) || perfectp(s(x0)) || f(0, x0, 0, x1) || f(0, x0, s(x1), x2) || f(s(x0), 0, x1, x2) || f(s(x0), s(x1), x2, x3) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (7) UsableRulesProof (EQUIVALENT) || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. || ---------------------------------------- || || (8) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || F(s(%X), s(%Y), %Z, %U) -> F(%X, %U, %Z, %U) || F(s(%X), 0, %Y, %Z) -> F(%X, %Z, minus(%Y, s(%X)), %Z) || || R is empty. || The set Q consists of the following terms: || || perfectp(0) || perfectp(s(x0)) || f(0, x0, 0, x1) || f(0, x0, s(x1), x2) || f(s(x0), 0, x1, x2) || f(s(x0), s(x1), x2, x3) || || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (9) QReductionProof (EQUIVALENT) || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. || || perfectp(0) || perfectp(s(x0)) || f(0, x0, 0, x1) || f(0, x0, s(x1), x2) || f(s(x0), 0, x1, x2) || f(s(x0), s(x1), x2, x3) || || || ---------------------------------------- || || (10) || Obligation: || Q DP problem: || The TRS P consists of the following rules: || || F(s(%X), s(%Y), %Z, %U) -> F(%X, %U, %Z, %U) || F(s(%X), 0, %Y, %Z) -> F(%X, %Z, minus(%Y, s(%X)), %Z) || || R is empty. || Q is empty. || We have to consider all minimal (P,Q,R)-chains. || ---------------------------------------- || || (11) QDPSizeChangeProof (EQUIVALENT) || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. || || From the DPs we obtained the following set of size-change graphs: || *F(s(%X), s(%Y), %Z, %U) -> F(%X, %U, %Z, %U) || The graph contains the following edges 1 > 1, 4 >= 2, 3 >= 3, 4 >= 4 || || || *F(s(%X), 0, %Y, %Z) -> F(%X, %Z, minus(%Y, s(%X)), %Z) || The graph contains the following edges 1 > 1, 4 >= 2, 4 >= 4 || || || ---------------------------------------- || || (12) || YES || We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] map#(F, cons(X, Y)) =#> map#(F, Y) 1] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 2] filter2#(true, F, X, Y) =#> filter#(F, Y) 3] filter2#(false, F, X, Y) =#> filter#(F, Y) Rules R_0: perfectp(0) => false perfectp(s(X)) => f(X, s(0), s(X), s(X)) f(0, X, 0, Y) => true f(0, X, s(Y), Z) => false f(s(X), 0, Y, Z) => f(X, Z, minus(Y, s(X)), Z) f(s(X), s(Y), Z, U) => if(le(X, Y), f(s(X), minus(Y, X), Z, U), f(X, U, Z, U)) map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) filter(F, nil) => nil filter(F, cons(X, Y)) => filter2(F X, F, X, Y) filter2(true, F, X, Y) => cons(X, filter(F, Y)) filter2(false, F, X, Y) => filter(F, Y) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0 * 1 : 2, 3 * 2 : 1 * 3 : 1 This graph has the following strongly connected components: P_1: map#(F, cons(X, Y)) =#> map#(F, Y) P_2: filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). Thus, the original system is terminating if each of (P_1, R_0, minimal, formative) and (P_2, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(filter2#) = 4 nu(filter#) = 2 Thus, we can orient the dependency pairs as follows: nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_2, R_0, minimal, f) by (P_3, R_0, minimal, f), where P_3 contains: filter2#(true, F, X, Y) =#> filter#(F, Y) filter2#(false, F, X, Y) =#> filter#(F, Y) Thus, the original system is terminating if each of (P_1, R_0, minimal, formative) and (P_3, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : * 1 : This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(map#) = 2 Thus, we can orient the dependency pairs as follows: nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_1, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.