/export/starexec/sandbox/solver/bin/starexec_run_c /export/starexec/sandbox/benchmark/theBenchmark.c /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.c # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination of the given C Problem could be proven: (0) C Problem (1) CToLLVMProof [EQUIVALENT, 177 ms] (2) LLVM problem (3) LLVMToTerminationGraphProof [EQUIVALENT, 1303 ms] (4) LLVM Symbolic Execution Graph (5) SymbolicExecutionGraphToSCCProof [SOUND, 0 ms] (6) AND (7) LLVM Symbolic Execution SCC (8) SCC2IRS [SOUND, 102 ms] (9) IntTRS (10) IRS2T2 [EQUIVALENT, 0 ms] (11) T2IntSys (12) T2 [EQUIVALENT, 264 ms] (13) YES (14) LLVM Symbolic Execution SCC (15) SCC2IRS [SOUND, 55 ms] (16) IntTRS (17) IRS2T2 [EQUIVALENT, 0 ms] (18) T2IntSys (19) T2 [EQUIVALENT, 304 ms] (20) YES ---------------------------------------- (0) Obligation: c file /export/starexec/sandbox/benchmark/theBenchmark.c ---------------------------------------- (1) CToLLVMProof (EQUIVALENT) Compiled c-file /export/starexec/sandbox/benchmark/theBenchmark.c to LLVM. ---------------------------------------- (2) Obligation: LLVM Problem Aliases: Data layout: "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128" Machine: "x86_64-pc-linux-gnu" Type definitions: Global variables: Function declarations and definitions: *BasicFunctionTypename: "main" linkageType: EXTERNALLY_VISIBLE returnParam: i32 parameters: () variableLength: false visibilityType: DEFAULT callingConvention: ccc 0: %1 = alloca i32, align 4 %x1 = alloca *i32, align 8 %x2 = alloca *i32, align 8 store 0, %1 %2 = alloca i8, numElementsLit: 4 %3 = bitcast *i8 %2 to *i32 store %3, %x1 %4 = alloca i8, numElementsLit: 4 %5 = bitcast *i8 %4 to *i32 store %5, %x2 br %6 6: %7 = load %x1 %8 = load %7 %9 = icmp sle %8 10 br %9, %10, %26 10: %11 = load %x2 store 10, %11 br %12 12: %13 = load %x2 %14 = load %13 %15 = icmp sgt %14 1 br %15, %16, %21 16: %17 = load %x2 %18 = load %17 %19 = sub %18 1 %20 = load %x2 store %19, %20 br %12 21: %22 = load %x1 %23 = load %22 %24 = add %23 1 %25 = load %x1 store %24, %25 br %6 26: %27 = load %1 ret %27 Analyze Termination of all function calls matching the pattern: main() ---------------------------------------- (3) LLVMToTerminationGraphProof (EQUIVALENT) Constructed symbolic execution graph for LLVM program and proved memory safety. ---------------------------------------- (4) Obligation: SE Graph ---------------------------------------- (5) SymbolicExecutionGraphToSCCProof (SOUND) Splitted symbolic execution graph to 2 SCCs. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: SCC ---------------------------------------- (8) SCC2IRS (SOUND) Transformed LLVM symbolic execution graph SCC into a rewrite problem. Log: Generated rules. Obtained 37 rulesP rules: f_197(v49, v50, v51, v52, v53, v54, 1, 0, 2, v65, v58, v59, v60, v61, v62, 3, 7, 10, 4, 8, 11) -> f_198(v49, v50, v51, v52, v53, v65, 1, 0, 2, v54, v58, v59, v60, v61, v62, 3, 7, 10, 4, 8, 11) :|: 0 = 0 f_198(v49, v50, v51, v52, v53, v65, 1, 0, 2, v54, v58, v59, v60, v61, v62, 3, 7, 10, 4, 8, 11) -> f_199(v49, v50, v51, v52, v53, v65, 1, 0, 2, v54, v58, v59, v60, v61, v62, 3, 7, 9, 4, 8, 10) :|: v65 <= 10 && v54 <= 9 f_199(v49, v50, v51, v52, v53, v65, 1, 0, 2, v54, v58, v59, v60, v61, v62, 3, 7, 9, 4, 8, 10) -> f_201(v49, v50, v51, v52, v53, v65, 1, 0, 2, v54, v58, v59, v60, v61, v62, 3, 7, 9, 4, 8, 10) :|: 0 = 0 f_201(v49, v50, v51, v52, v53, v65, 1, 0, 2, v54, v58, v59, v60, v61, v62, 3, 7, 9, 4, 8, 10) -> f_203(v49, v50, v51, v52, v53, v65, 1, 0, 2, v54, v58, v59, v60, v61, v62, 3, 7, 9, 4, 8, 10) :|: TRUE f_203(v49, v50, v51, v52, v53, v65, 1, 0, 2, v54, v58, v59, v60, v61, v62, 3, 7, 9, 4, 8, 10) -> f_205(v49, v50, v51, v52, v53, v65, 1, 0, 2, v54, v58, v59, v60, v61, v62, 3, 7, 9, 4, 8, 10) :|: 0 = 0 f_205(v49, v50, v51, v52, v53, v65, 1, 0, 2, v54, v58, v59, v60, v61, v62, 3, 7, 9, 4, 8, 10) -> f_207(v49, v50, v51, v52, v53, v65, 1, 0, 2, v54, v58, v59, v60, v61, v62, 10, 3, 7, 9, 4, 8) :|: TRUE f_207(v49, v50, v51, v52, v53, v65, 1, 0, 2, v54, v58, v59, v60, v61, v62, 10, 3, 7, 9, 4, 8) -> f_208(v49, v50, v51, v52, v53, v65, 1, 0, 2, v54, v58, v59, v60, v61, v62, 10, 3, 7, 9, 4, 8) :|: TRUE f_208(v49, v50, v51, v52, v53, v65, 1, 0, 2, v54, v58, v59, v60, v61, v62, 10, 3, 7, 9, 4, 8) -> f_209(v49, v50, v51, v52, v53, v65, 1, 0, 2, v54, v58, v59, v60, v61, v62, 10, 3, 7, 9, 4, 8) :|: 0 = 0 f_209(v49, v50, v51, v52, v53, v65, 1, 0, 2, v54, v58, v59, v60, v61, v62, 10, 3, 7, 9, 4, 8) -> f_210(v49, v50, v51, v52, v53, v65, 1, 10, 0, 2, v54, v58, v59, v60, v61, v62, 3, 7, 9, 4, 8) :|: 0 = 0 f_210(v49, v50, v51, v52, v53, v65, 1, 10, 0, 2, v54, v58, v59, v60, v61, v62, 3, 7, 9, 4, 8) -> f_211(v49, v50, v51, v52, v53, v65, 1, 10, 2, v54, v58, v59, v60, v61, v62, 0, 3, 7, 9, 4, 8) :|: 0 = 0 f_211(v49, v50, v51, v52, v53, v65, 1, 10, 2, v54, v58, v59, v60, v61, v62, 0, 3, 7, 9, 4, 8) -> f_212(v49, v50, v51, v52, v53, v65, 1, 10, 2, v54, v58, v59, v60, v61, v62, 0, 3, 7, 9, 4, 8) :|: TRUE f_212(v49, v50, v51, v52, v53, v65, 1, 10, 2, v54, v58, v59, v60, v61, v62, 0, 3, 7, 9, 4, 8) -> f_223(v49, v50, v51, v52, v53, v65, 1, 10, 2, 1, v54, v58, v59, v60, v61, v62, 0, 3, 7, 10, 9, 2, 4, 8) :|: TRUE f_223(v127, v128, v129, v130, v131, v132, 1, v134, v135, v136, v137, v138, v139, v140, v141, v142, 0, 3, 7, 10, 9, 2, 4, 8) -> f_234(v127, v128, v129, v130, v131, v132, 1, v134, v135, v136, v137, v138, v139, v140, v141, v142, 0, 3, 7, 10, 8, 2, 9, 4) :|: TRUE f_234(v171, v172, v173, v174, v175, v176, 1, v178, v179, v180, v181, v182, v183, v184, v185, v186, 0, 3, 7, 10, 8, 2, 9, 4) -> f_245(v171, v172, v173, v174, v175, v176, 1, v178, v179, v180, v181, v182, v183, v184, v185, v186, 0, 3, 7, 10, 2, 9, 4, 8) :|: TRUE f_245(v215, v216, v217, v218, v219, v220, 1, v222, v223, v224, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 2, 9, 4, 8) -> f_246(v215, v216, v217, v218, v219, v220, 1, v222, v223, v224, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 2, 9, 4, 8) :|: 0 = 0 f_246(v215, v216, v217, v218, v219, v220, 1, v222, v223, v224, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 2, 9, 4, 8) -> f_247(v215, v216, v217, v218, v219, v220, 1, v222, v224, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 2, 9, 4, 8) :|: 0 = 0 f_247(v215, v216, v217, v218, v219, v220, 1, v222, v224, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 2, 9, 4, 8) -> f_248(v215, v216, v217, v218, v219, v220, 1, v222, v232, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 2, 9, 4, 8) :|: 1 + v232 = v222 && 1 <= v232 && v232 <= 9 f_248(v215, v216, v217, v218, v219, v220, 1, v222, v232, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 2, 9, 4, 8) -> f_249(v215, v216, v217, v218, v219, v220, 1, v222, v232, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 2, 9, 4, 8) :|: 0 = 0 f_249(v215, v216, v217, v218, v219, v220, 1, v222, v232, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 2, 9, 4, 8) -> f_250(v215, v216, v217, v218, v219, v220, 1, v222, v232, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 2, 9, 4, 8) :|: TRUE f_250(v215, v216, v217, v218, v219, v220, 1, v222, v232, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 2, 9, 4, 8) -> f_251(v215, v216, v217, v218, v219, v220, 1, v222, v232, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 2, 9, 4, 8) :|: TRUE f_251(v215, v216, v217, v218, v219, v220, 1, v222, v232, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 2, 9, 4, 8) -> f_252(v215, v216, v217, v218, v219, v220, 1, v222, v232, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 2, 9, 4, 8) :|: 0 = 0 f_252(v215, v216, v217, v218, v219, v220, 1, v222, v232, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 2, 9, 4, 8) -> f_253(v215, v216, v217, v218, v219, v220, 1, v232, v222, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 2, 9, 4, 8) :|: 0 = 0 f_253(v215, v216, v217, v218, v219, v220, 1, v232, v222, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 2, 9, 4, 8) -> f_254(v215, v216, v217, v218, v219, v220, 1, v232, v222, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 9, 4, 8, 2) :|: 1 < v232 && 3 <= v222 f_253(v215, v216, v217, v218, v219, v220, 1, v232, v222, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 2, 9, 4, 8) -> f_255(v215, v216, v217, v218, v219, v220, 1, 2, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 9, 4, 8) :|: v232 <= 1 && v222 = 2 && v232 = 1 && 0 = 0 f_254(v215, v216, v217, v218, v219, v220, 1, v232, v222, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 9, 4, 8, 2) -> f_256(v215, v216, v217, v218, v219, v220, 1, v232, v222, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 9, 4, 8, 2) :|: 0 = 0 f_256(v215, v216, v217, v218, v219, v220, 1, v232, v222, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 9, 4, 8, 2) -> f_258(v215, v216, v217, v218, v219, v220, 1, v232, v222, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 9, 4, 8, 2) :|: TRUE f_258(v215, v216, v217, v218, v219, v220, 1, v232, v222, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 9, 4, 8, 2) -> f_245(v215, v216, v217, v218, v219, v220, 1, v232, v222, v232, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 2, 9, 4, 8) :|: TRUE f_255(v215, v216, v217, v218, v219, v220, 1, 2, v225, v226, v227, v228, v229, v230, 0, 3, 7, 10, 9, 4, 8) -> f_257(v215, v216, v217, v218, v219, v220, 1, 0, 2, v225, v226, v227, v228, v229, v230, 3, 7, 10, 9, 4, 8) :|: 0 = 0 f_257(v215, v216, v217, v218, v219, v220, 1, 0, 2, v225, v226, v227, v228, v229, v230, 3, 7, 10, 9, 4, 8) -> f_259(v215, v216, v217, v218, v219, v220, 1, 0, 2, v225, v226, v227, v228, v229, v230, 3, 7, 10, 9, 4, 8) :|: TRUE f_259(v215, v216, v217, v218, v219, v220, 1, 0, 2, v225, v226, v227, v228, v229, v230, 3, 7, 10, 9, 4, 8) -> f_260(v215, v216, v217, v218, v219, v220, 1, 0, 2, v225, v226, v227, v228, v229, v230, 3, 7, 10, 9, 4, 8) :|: 0 = 0 f_260(v215, v216, v217, v218, v219, v220, 1, 0, 2, v225, v226, v227, v228, v229, v230, 3, 7, 10, 9, 4, 8) -> f_261(v215, v216, v217, v218, v219, v220, 1, 0, 2, v226, v227, v228, v229, v230, 3, 7, 10, 4, 8) :|: 0 = 0 f_261(v215, v216, v217, v218, v219, v220, 1, 0, 2, v226, v227, v228, v229, v230, 3, 7, 10, 4, 8) -> f_262(v215, v216, v217, v218, v219, v220, 1, 0, 2, v276, v226, v227, v228, v229, v230, 3, 7, 10, 4, 8, 11) :|: v276 = 1 + v220 && v276 <= 11 f_262(v215, v216, v217, v218, v219, v220, 1, 0, 2, v276, v226, v227, v228, v229, v230, 3, 7, 10, 4, 8, 11) -> f_263(v215, v216, v217, v218, v219, v220, 1, 0, 2, v276, v226, v227, v228, v229, v230, 3, 7, 10, 4, 8, 11) :|: 0 = 0 f_263(v215, v216, v217, v218, v219, v220, 1, 0, 2, v276, v226, v227, v228, v229, v230, 3, 7, 10, 4, 8, 11) -> f_264(v215, v216, v217, v218, v219, v220, 1, 0, 2, v276, v226, v227, v228, v229, v230, 3, 7, 10, 4, 8, 11) :|: TRUE f_264(v215, v216, v217, v218, v219, v220, 1, 0, 2, v276, v226, v227, v228, v229, v230, 3, 7, 10, 4, 8, 11) -> f_265(v215, v216, v217, v218, v219, v220, 1, 0, 2, v276, v226, v227, v228, v229, v230, 3, 7, 10, 4, 8, 11) :|: TRUE f_265(v215, v216, v217, v218, v219, v220, 1, 0, 2, v276, v226, v227, v228, v229, v230, 3, 7, 10, 4, 8, 11) -> f_196(v215, v216, v217, v218, v219, v220, 1, 0, 2, v276, v226, v227, v228, v229, v230, 3, 7, 10, 4, 8, 11) :|: TRUE f_196(v49, v50, v51, v52, v53, v54, 1, 0, 2, v65, v58, v59, v60, v61, v62, 3, 7, 10, 4, 8, 11) -> f_197(v49, v50, v51, v52, v53, v54, 1, 0, 2, v65, v58, v59, v60, v61, v62, 3, 7, 10, 4, 8, 11) :|: 0 = 0 Combined rules. Obtained 2 rulesP rules: f_253(v215:0, v216:0, v217:0, v218:0, v219:0, v220:0, 1, 1, 2, v225:0, v226:0, v227:0, v228:0, v229:0, v230:0, 0, 3, 7, 10, 2, 9, 4, 8) -> f_253(v215:0, v216:0, v217:0, v218:0, v219:0, 1 + v220:0, 1, 9, 10, v220:0, v226:0, v227:0, v228:0, v229:0, v230:0, 0, 3, 7, 10, 2, 9, 4, 8) :|: v220:0 < 10 && v220:0 < 11 f_253(v215:0, v216:0, v217:0, v218:0, v219:0, v220:0, 1, 1 + v232:1, v222:0, v225:0, v226:0, v227:0, v228:0, v229:0, v230:0, 0, 3, 7, 10, 2, 9, 4, 8) -> f_253(v215:0, v216:0, v217:0, v218:0, v219:0, v220:0, 1, v232:1, 1 + v232:1, v225:0, v226:0, v227:0, v228:0, v229:0, v230:0, 0, 3, 7, 10, 2, 9, 4, 8) :|: v232:1 > 0 && v232:1 < 10 && v222:0 > 2 Filtered unneeded arguments: f_253(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20, x21, x22, x23) -> f_253(x6, x8, x9) Removed division, modulo operations, cleaned up constraints. Obtained 2 rules.P rules: f_253(v220:0, cons_1, cons_2) -> f_253(1 + v220:0, 9, 10) :|: v220:0 < 10 && v220:0 < 11 && cons_1 = 1 && cons_2 = 2 f_253(v220:0, sum~cons_1~v232:1, v222:0) -> f_253(v220:0, v232:1, 1 + v232:1) :|: v232:1 < 10 && v222:0 > 2 && v232:1 > 0 && sum~cons_1~v232:1 = 1 + v232:1 ---------------------------------------- (9) Obligation: Rules: f_253(v220:0, cons_1, cons_2) -> f_253(1 + v220:0, 9, 10) :|: v220:0 < 10 && v220:0 < 11 && cons_1 = 1 && cons_2 = 2 f_253(x, x1, x2) -> f_253(x, x3, 1 + x3) :|: x3 < 10 && x2 > 2 && x3 > 0 && x1 = 1 + x3 ---------------------------------------- (10) IRS2T2 (EQUIVALENT) Transformed input IRS into an integer transition system.Used the following mapping from defined symbols to location IDs: (f_253_3,1) ---------------------------------------- (11) Obligation: START: 0; FROM: 0; TO: 1; FROM: 1; oldX0 := x0; oldX1 := x1; oldX2 := x2; assume(oldX0 < 10 && oldX0 < 11 && oldX1 = 1 && oldX2 = 2); x0 := 1 + oldX0; x1 := 9; x2 := 10; TO: 1; FROM: 1; oldX0 := x0; oldX1 := x1; oldX2 := x2; oldX3 := oldX1 - 1; assume(oldX3 < 10 && oldX2 > 2 && oldX3 > 0 && oldX1 = 1 + oldX3); x0 := oldX0; x1 := oldX1 - 1; x2 := 1 + oldX3; TO: 1; ---------------------------------------- (12) T2 (EQUIVALENT) Initially, performed program simplifications using lexicographic rank functions: * Removed transitions 1, 4, 5 using the following rank functions: - Rank function 1: RF for loc. 5: 1-18*x0+2*x1 RF for loc. 6: -18*x0+2*x1 Bound for (chained) transitions 4: -178 - Rank function 2: RF for loc. 5: 1+2*x1 RF for loc. 6: 2*x1 Bound for (chained) transitions 5: 4 - Rank function 3: RF for loc. 5: 0 RF for loc. 6: -1 Bound for (chained) transitions 1: 0 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: SCC ---------------------------------------- (15) SCC2IRS (SOUND) Transformed LLVM symbolic execution graph SCC into a rewrite problem. Log: Generated rules. Obtained 12 rulesP rules: f_177(v49, v50, v51, v52, v53, v54, 1, v56, v57, v58, v59, v60, v61, v62, 0, 3, 7, 10, 2, 9, 4, 8) -> f_178(v49, v50, v51, v52, v53, v54, 1, v57, v56, v58, v59, v60, v61, v62, 0, 3, 7, 10, 2, 9, 4, 8) :|: 0 = 0 f_178(v49, v50, v51, v52, v53, v54, 1, v57, v56, v58, v59, v60, v61, v62, 0, 3, 7, 10, 2, 9, 4, 8) -> f_179(v49, v50, v51, v52, v53, v54, 1, v57, v56, v58, v59, v60, v61, v62, 0, 3, 7, 10, 2, 9, 4, 8) :|: 1 < v57 && 3 <= v56 f_179(v49, v50, v51, v52, v53, v54, 1, v57, v56, v58, v59, v60, v61, v62, 0, 3, 7, 10, 2, 9, 4, 8) -> f_181(v49, v50, v51, v52, v53, v54, 1, v57, v56, v58, v59, v60, v61, v62, 0, 3, 7, 10, 2, 9, 4, 8) :|: 0 = 0 f_181(v49, v50, v51, v52, v53, v54, 1, v57, v56, v58, v59, v60, v61, v62, 0, 3, 7, 10, 2, 9, 4, 8) -> f_183(v49, v50, v51, v52, v53, v54, 1, v57, v56, v58, v59, v60, v61, v62, 0, 3, 7, 10, 2, 9, 4, 8) :|: TRUE f_183(v49, v50, v51, v52, v53, v54, 1, v57, v56, v58, v59, v60, v61, v62, 0, 3, 7, 10, 2, 9, 4, 8) -> f_185(v49, v50, v51, v52, v53, v54, 1, v57, v56, v58, v59, v60, v61, v62, 0, 3, 7, 10, 2, 9, 4, 8) :|: 0 = 0 f_185(v49, v50, v51, v52, v53, v54, 1, v57, v56, v58, v59, v60, v61, v62, 0, 3, 7, 10, 2, 9, 4, 8) -> f_187(v49, v50, v51, v52, v53, v54, 1, v57, v58, v59, v60, v61, v62, 0, 3, 7, 10, 2, 9, 4, 8) :|: 0 = 0 f_187(v49, v50, v51, v52, v53, v54, 1, v57, v58, v59, v60, v61, v62, 0, 3, 7, 10, 2, 9, 4, 8) -> f_189(v49, v50, v51, v52, v53, v54, 1, v57, v64, v58, v59, v60, v61, v62, 0, 3, 7, 10, 2, 9, 4, 8) :|: 1 + v64 = v57 && 1 <= v64 && v64 <= 8 f_189(v49, v50, v51, v52, v53, v54, 1, v57, v64, v58, v59, v60, v61, v62, 0, 3, 7, 10, 2, 9, 4, 8) -> f_191(v49, v50, v51, v52, v53, v54, 1, v57, v64, v58, v59, v60, v61, v62, 0, 3, 7, 10, 2, 9, 4, 8) :|: 0 = 0 f_191(v49, v50, v51, v52, v53, v54, 1, v57, v64, v58, v59, v60, v61, v62, 0, 3, 7, 10, 2, 9, 4, 8) -> f_193(v49, v50, v51, v52, v53, v54, 1, v57, v64, v58, v59, v60, v61, v62, 0, 3, 7, 10, 2, 9, 4, 8) :|: TRUE f_193(v49, v50, v51, v52, v53, v54, 1, v57, v64, v58, v59, v60, v61, v62, 0, 3, 7, 10, 2, 9, 4, 8) -> f_195(v49, v50, v51, v52, v53, v54, 1, v57, v64, v58, v59, v60, v61, v62, 0, 3, 7, 10, 2, 9, 4, 8) :|: TRUE f_195(v49, v50, v51, v52, v53, v54, 1, v57, v64, v58, v59, v60, v61, v62, 0, 3, 7, 10, 2, 9, 4, 8) -> f_176(v49, v50, v51, v52, v53, v54, 1, v57, v64, v58, v59, v60, v61, v62, 0, 3, 7, 10, 2, 9, 4, 8) :|: TRUE f_176(v49, v50, v51, v52, v53, v54, 1, v56, v57, v58, v59, v60, v61, v62, 0, 3, 7, 10, 2, 9, 4, 8) -> f_177(v49, v50, v51, v52, v53, v54, 1, v56, v57, v58, v59, v60, v61, v62, 0, 3, 7, 10, 2, 9, 4, 8) :|: 0 = 0 Combined rules. Obtained 1 rulesP rules: f_177(v49:0, v50:0, v51:0, v52:0, v53:0, v54:0, 1, v56:0, 1 + v64:0, v58:0, v59:0, v60:0, v61:0, v62:0, 0, 3, 7, 10, 2, 9, 4, 8) -> f_177(v49:0, v50:0, v51:0, v52:0, v53:0, v54:0, 1, 1 + v64:0, v64:0, v58:0, v59:0, v60:0, v61:0, v62:0, 0, 3, 7, 10, 2, 9, 4, 8) :|: v56:0 > 2 && v64:0 > 0 && v64:0 < 9 Filtered unneeded arguments: f_177(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20, x21, x22) -> f_177(x8, x9) Removed division, modulo operations, cleaned up constraints. Obtained 1 rules.P rules: f_177(v56:0, sum~cons_1~v64:0) -> f_177(1 + v64:0, v64:0) :|: v64:0 > 0 && v64:0 < 9 && v56:0 > 2 && sum~cons_1~v64:0 = 1 + v64:0 ---------------------------------------- (16) Obligation: Rules: f_177(v56:0, sum~cons_1~v64:0) -> f_177(1 + v64:0, v64:0) :|: v64:0 > 0 && v64:0 < 9 && v56:0 > 2 && sum~cons_1~v64:0 = 1 + v64:0 ---------------------------------------- (17) IRS2T2 (EQUIVALENT) Transformed input IRS into an integer transition system.Used the following mapping from defined symbols to location IDs: (f_177_2,1) ---------------------------------------- (18) Obligation: START: 0; FROM: 0; TO: 1; FROM: 1; oldX0 := x0; oldX1 := x1; oldX2 := oldX1 - 1; assume(oldX2 > 0 && oldX2 < 9 && oldX0 > 2 && oldX1 = 1 + oldX2); x0 := 1 + oldX2; x1 := oldX1 - 1; TO: 1; ---------------------------------------- (19) T2 (EQUIVALENT) Initially, performed program simplifications using lexicographic rank functions: * Removed transitions 1, 3, 4 using the following rank functions: - Rank function 1: RF for loc. 5: 1+2*x1 RF for loc. 6: 2*x1 Bound for (chained) transitions 4: 4 - Rank function 2: RF for loc. 5: 1+2*x1 RF for loc. 6: 2*x1 Bound for (chained) transitions 3: 4 - Rank function 3: RF for loc. 5: 0 RF for loc. 6: -1 Bound for (chained) transitions 1: 0 ---------------------------------------- (20) YES