/export/starexec/sandbox2/solver/bin/starexec_run_c /export/starexec/sandbox2/benchmark/theBenchmark.c /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.c # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination of the given C Problem could be proven: (0) C Problem (1) CToIRSProof [EQUIVALENT, 0 ms] (2) IntTRS (3) TerminationGraphProcessor [SOUND, 61 ms] (4) IntTRS (5) IntTRSCompressionProof [EQUIVALENT, 9 ms] (6) IntTRS (7) PolynomialOrderProcessor [EQUIVALENT, 0 ms] (8) IntTRS (9) PolynomialOrderProcessor [EQUIVALENT, 2 ms] (10) YES ---------------------------------------- (0) Obligation: c file /export/starexec/sandbox2/benchmark/theBenchmark.c ---------------------------------------- (1) CToIRSProof (EQUIVALENT) Parsed C Integer Program as IRS. ---------------------------------------- (2) Obligation: Rules: f1(y, z) -> f2(x_1, z) :|: TRUE f2(x, x1) -> f3(x, x2) :|: TRUE f4(x3, x4) -> f5(arith, x4) :|: TRUE && arith = x3 - 1 f6(x5, x6) -> f9(x5, x7) :|: TRUE f7(x24, x25) -> f10(x24, x26) :|: TRUE && x26 = x25 - 1 f5(x10, x11) -> f6(x10, x11) :|: x10 >= 0 f5(x12, x13) -> f7(x12, x13) :|: x12 < 0 f9(x14, x15) -> f8(x14, x15) :|: TRUE f10(x16, x17) -> f8(x16, x17) :|: TRUE f3(x18, x19) -> f4(x18, x19) :|: x19 >= 0 f8(x20, x21) -> f3(x20, x21) :|: TRUE f3(x22, x23) -> f11(x22, x23) :|: x23 < 0 Start term: f1(y, z) ---------------------------------------- (3) TerminationGraphProcessor (SOUND) Constructed the termination graph and obtained one non-trivial SCC. ---------------------------------------- (4) Obligation: Rules: f3(x18, x19) -> f4(x18, x19) :|: x19 >= 0 f8(x20, x21) -> f3(x20, x21) :|: TRUE f9(x14, x15) -> f8(x14, x15) :|: TRUE f6(x5, x6) -> f9(x5, x7) :|: TRUE f5(x10, x11) -> f6(x10, x11) :|: x10 >= 0 f4(x3, x4) -> f5(arith, x4) :|: TRUE && arith = x3 - 1 f10(x16, x17) -> f8(x16, x17) :|: TRUE f7(x24, x25) -> f10(x24, x26) :|: TRUE && x26 = x25 - 1 f5(x12, x13) -> f7(x12, x13) :|: x12 < 0 ---------------------------------------- (5) IntTRSCompressionProof (EQUIVALENT) Compressed rules. ---------------------------------------- (6) Obligation: Rules: f5(x12:0, x13:0) -> f5(x12:0 - 1, x13:0 - 1) :|: x12:0 < 0 && x13:0 > 0 f5(x10:0, x11:0) -> f5(x10:0 - 1, x7:0) :|: x10:0 > -1 && x7:0 > -1 ---------------------------------------- (7) PolynomialOrderProcessor (EQUIVALENT) Found the following polynomial interpretation: [f5(x, x1)] = x The following rules are decreasing: f5(x12:0, x13:0) -> f5(x12:0 - 1, x13:0 - 1) :|: x12:0 < 0 && x13:0 > 0 f5(x10:0, x11:0) -> f5(x10:0 - 1, x7:0) :|: x10:0 > -1 && x7:0 > -1 The following rules are bounded: f5(x10:0, x11:0) -> f5(x10:0 - 1, x7:0) :|: x10:0 > -1 && x7:0 > -1 ---------------------------------------- (8) Obligation: Rules: f5(x12:0, x13:0) -> f5(x12:0 - 1, x13:0 - 1) :|: x12:0 < 0 && x13:0 > 0 ---------------------------------------- (9) PolynomialOrderProcessor (EQUIVALENT) Found the following polynomial interpretation: [f5(x, x1)] = x1 The following rules are decreasing: f5(x12:0, x13:0) -> f5(x12:0 - 1, x13:0 - 1) :|: x12:0 < 0 && x13:0 > 0 The following rules are bounded: f5(x12:0, x13:0) -> f5(x12:0 - 1, x13:0 - 1) :|: x12:0 < 0 && x13:0 > 0 ---------------------------------------- (10) YES