/export/starexec/sandbox2/solver/bin/starexec_run_Transition /export/starexec/sandbox2/benchmark/theBenchmark.smt2 /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES DP problem for innermost termination. P = f11#(x1, x2, x3, x4) -> f10#(x1, x2, x3, x4) f10#(I0, I1, I2, I3) -> f4#(1, I1, I2, I3) f2#(I4, I5, I6, I7) -> f5#(I4, I5, 999, I7) f6#(I8, I9, I10, I11) -> f5#(I8, I9, -1 + I10, I11) [0 <= I10] f6#(I12, I13, I14, I15) -> f9#(I12, I13, I14, 999) [1 + I14 <= 0] f9#(I16, I17, I18, I19) -> f7#(I16, I17, I18, I19) f7#(I20, I21, I22, I23) -> f9#(I20, I21, I22, -1 + I23) [0 <= I23] f5#(I28, I29, I30, I31) -> f6#(I28, I29, I30, I31) f3#(I32, I33, I34, I35) -> f1#(I32, I33, I34, I35) f4#(I36, I37, I38, I39) -> f3#(I36, 999, I38, I39) [0 <= I36 /\ I36 <= 0] f4#(I40, I41, I42, I43) -> f2#(I40, I41, I42, I43) [1 + I40 <= 0] f4#(I44, I45, I46, I47) -> f2#(I44, I45, I46, I47) [1 <= I44] f1#(I48, I49, I50, I51) -> f3#(I48, -1 + I49, I50, I51) [0 <= I49] f1#(I52, I53, I54, I55) -> f2#(I52, I53, I54, I55) [1 + I53 <= 0] R = f11(x1, x2, x3, x4) -> f10(x1, x2, x3, x4) f10(I0, I1, I2, I3) -> f4(1, I1, I2, I3) f2(I4, I5, I6, I7) -> f5(I4, I5, 999, I7) f6(I8, I9, I10, I11) -> f5(I8, I9, -1 + I10, I11) [0 <= I10] f6(I12, I13, I14, I15) -> f9(I12, I13, I14, 999) [1 + I14 <= 0] f9(I16, I17, I18, I19) -> f7(I16, I17, I18, I19) f7(I20, I21, I22, I23) -> f9(I20, I21, I22, -1 + I23) [0 <= I23] f7(I24, I25, I26, I27) -> f8(I24, I25, I26, I27) [1 + I27 <= 0] f5(I28, I29, I30, I31) -> f6(I28, I29, I30, I31) f3(I32, I33, I34, I35) -> f1(I32, I33, I34, I35) f4(I36, I37, I38, I39) -> f3(I36, 999, I38, I39) [0 <= I36 /\ I36 <= 0] f4(I40, I41, I42, I43) -> f2(I40, I41, I42, I43) [1 + I40 <= 0] f4(I44, I45, I46, I47) -> f2(I44, I45, I46, I47) [1 <= I44] f1(I48, I49, I50, I51) -> f3(I48, -1 + I49, I50, I51) [0 <= I49] f1(I52, I53, I54, I55) -> f2(I52, I53, I54, I55) [1 + I53 <= 0] The dependency graph for this problem is: 0 -> 1 1 -> 11 2 -> 7 3 -> 7 4 -> 5 5 -> 6 6 -> 5 7 -> 3, 4 8 -> 12, 13 9 -> 8 10 -> 2 11 -> 2 12 -> 8 13 -> 2 Where: 0) f11#(x1, x2, x3, x4) -> f10#(x1, x2, x3, x4) 1) f10#(I0, I1, I2, I3) -> f4#(1, I1, I2, I3) 2) f2#(I4, I5, I6, I7) -> f5#(I4, I5, 999, I7) 3) f6#(I8, I9, I10, I11) -> f5#(I8, I9, -1 + I10, I11) [0 <= I10] 4) f6#(I12, I13, I14, I15) -> f9#(I12, I13, I14, 999) [1 + I14 <= 0] 5) f9#(I16, I17, I18, I19) -> f7#(I16, I17, I18, I19) 6) f7#(I20, I21, I22, I23) -> f9#(I20, I21, I22, -1 + I23) [0 <= I23] 7) f5#(I28, I29, I30, I31) -> f6#(I28, I29, I30, I31) 8) f3#(I32, I33, I34, I35) -> f1#(I32, I33, I34, I35) 9) f4#(I36, I37, I38, I39) -> f3#(I36, 999, I38, I39) [0 <= I36 /\ I36 <= 0] 10) f4#(I40, I41, I42, I43) -> f2#(I40, I41, I42, I43) [1 + I40 <= 0] 11) f4#(I44, I45, I46, I47) -> f2#(I44, I45, I46, I47) [1 <= I44] 12) f1#(I48, I49, I50, I51) -> f3#(I48, -1 + I49, I50, I51) [0 <= I49] 13) f1#(I52, I53, I54, I55) -> f2#(I52, I53, I54, I55) [1 + I53 <= 0] We have the following SCCs. { 8, 12 } { 3, 7 } { 5, 6 } DP problem for innermost termination. P = f9#(I16, I17, I18, I19) -> f7#(I16, I17, I18, I19) f7#(I20, I21, I22, I23) -> f9#(I20, I21, I22, -1 + I23) [0 <= I23] R = f11(x1, x2, x3, x4) -> f10(x1, x2, x3, x4) f10(I0, I1, I2, I3) -> f4(1, I1, I2, I3) f2(I4, I5, I6, I7) -> f5(I4, I5, 999, I7) f6(I8, I9, I10, I11) -> f5(I8, I9, -1 + I10, I11) [0 <= I10] f6(I12, I13, I14, I15) -> f9(I12, I13, I14, 999) [1 + I14 <= 0] f9(I16, I17, I18, I19) -> f7(I16, I17, I18, I19) f7(I20, I21, I22, I23) -> f9(I20, I21, I22, -1 + I23) [0 <= I23] f7(I24, I25, I26, I27) -> f8(I24, I25, I26, I27) [1 + I27 <= 0] f5(I28, I29, I30, I31) -> f6(I28, I29, I30, I31) f3(I32, I33, I34, I35) -> f1(I32, I33, I34, I35) f4(I36, I37, I38, I39) -> f3(I36, 999, I38, I39) [0 <= I36 /\ I36 <= 0] f4(I40, I41, I42, I43) -> f2(I40, I41, I42, I43) [1 + I40 <= 0] f4(I44, I45, I46, I47) -> f2(I44, I45, I46, I47) [1 <= I44] f1(I48, I49, I50, I51) -> f3(I48, -1 + I49, I50, I51) [0 <= I49] f1(I52, I53, I54, I55) -> f2(I52, I53, I54, I55) [1 + I53 <= 0] We use the basic value criterion with the projection function NU: NU[f7#(z1,z2,z3,z4)] = z4 NU[f9#(z1,z2,z3,z4)] = z4 This gives the following inequalities: ==> I19 (>! \union =) I19 0 <= I23 ==> I23 >! -1 + I23 We remove all the strictly oriented dependency pairs. DP problem for innermost termination. P = f9#(I16, I17, I18, I19) -> f7#(I16, I17, I18, I19) R = f11(x1, x2, x3, x4) -> f10(x1, x2, x3, x4) f10(I0, I1, I2, I3) -> f4(1, I1, I2, I3) f2(I4, I5, I6, I7) -> f5(I4, I5, 999, I7) f6(I8, I9, I10, I11) -> f5(I8, I9, -1 + I10, I11) [0 <= I10] f6(I12, I13, I14, I15) -> f9(I12, I13, I14, 999) [1 + I14 <= 0] f9(I16, I17, I18, I19) -> f7(I16, I17, I18, I19) f7(I20, I21, I22, I23) -> f9(I20, I21, I22, -1 + I23) [0 <= I23] f7(I24, I25, I26, I27) -> f8(I24, I25, I26, I27) [1 + I27 <= 0] f5(I28, I29, I30, I31) -> f6(I28, I29, I30, I31) f3(I32, I33, I34, I35) -> f1(I32, I33, I34, I35) f4(I36, I37, I38, I39) -> f3(I36, 999, I38, I39) [0 <= I36 /\ I36 <= 0] f4(I40, I41, I42, I43) -> f2(I40, I41, I42, I43) [1 + I40 <= 0] f4(I44, I45, I46, I47) -> f2(I44, I45, I46, I47) [1 <= I44] f1(I48, I49, I50, I51) -> f3(I48, -1 + I49, I50, I51) [0 <= I49] f1(I52, I53, I54, I55) -> f2(I52, I53, I54, I55) [1 + I53 <= 0] The dependency graph for this problem is: 5 -> Where: 5) f9#(I16, I17, I18, I19) -> f7#(I16, I17, I18, I19) We have the following SCCs. DP problem for innermost termination. P = f6#(I8, I9, I10, I11) -> f5#(I8, I9, -1 + I10, I11) [0 <= I10] f5#(I28, I29, I30, I31) -> f6#(I28, I29, I30, I31) R = f11(x1, x2, x3, x4) -> f10(x1, x2, x3, x4) f10(I0, I1, I2, I3) -> f4(1, I1, I2, I3) f2(I4, I5, I6, I7) -> f5(I4, I5, 999, I7) f6(I8, I9, I10, I11) -> f5(I8, I9, -1 + I10, I11) [0 <= I10] f6(I12, I13, I14, I15) -> f9(I12, I13, I14, 999) [1 + I14 <= 0] f9(I16, I17, I18, I19) -> f7(I16, I17, I18, I19) f7(I20, I21, I22, I23) -> f9(I20, I21, I22, -1 + I23) [0 <= I23] f7(I24, I25, I26, I27) -> f8(I24, I25, I26, I27) [1 + I27 <= 0] f5(I28, I29, I30, I31) -> f6(I28, I29, I30, I31) f3(I32, I33, I34, I35) -> f1(I32, I33, I34, I35) f4(I36, I37, I38, I39) -> f3(I36, 999, I38, I39) [0 <= I36 /\ I36 <= 0] f4(I40, I41, I42, I43) -> f2(I40, I41, I42, I43) [1 + I40 <= 0] f4(I44, I45, I46, I47) -> f2(I44, I45, I46, I47) [1 <= I44] f1(I48, I49, I50, I51) -> f3(I48, -1 + I49, I50, I51) [0 <= I49] f1(I52, I53, I54, I55) -> f2(I52, I53, I54, I55) [1 + I53 <= 0] We use the basic value criterion with the projection function NU: NU[f5#(z1,z2,z3,z4)] = z3 NU[f6#(z1,z2,z3,z4)] = z3 This gives the following inequalities: 0 <= I10 ==> I10 >! -1 + I10 ==> I30 (>! \union =) I30 We remove all the strictly oriented dependency pairs. DP problem for innermost termination. P = f5#(I28, I29, I30, I31) -> f6#(I28, I29, I30, I31) R = f11(x1, x2, x3, x4) -> f10(x1, x2, x3, x4) f10(I0, I1, I2, I3) -> f4(1, I1, I2, I3) f2(I4, I5, I6, I7) -> f5(I4, I5, 999, I7) f6(I8, I9, I10, I11) -> f5(I8, I9, -1 + I10, I11) [0 <= I10] f6(I12, I13, I14, I15) -> f9(I12, I13, I14, 999) [1 + I14 <= 0] f9(I16, I17, I18, I19) -> f7(I16, I17, I18, I19) f7(I20, I21, I22, I23) -> f9(I20, I21, I22, -1 + I23) [0 <= I23] f7(I24, I25, I26, I27) -> f8(I24, I25, I26, I27) [1 + I27 <= 0] f5(I28, I29, I30, I31) -> f6(I28, I29, I30, I31) f3(I32, I33, I34, I35) -> f1(I32, I33, I34, I35) f4(I36, I37, I38, I39) -> f3(I36, 999, I38, I39) [0 <= I36 /\ I36 <= 0] f4(I40, I41, I42, I43) -> f2(I40, I41, I42, I43) [1 + I40 <= 0] f4(I44, I45, I46, I47) -> f2(I44, I45, I46, I47) [1 <= I44] f1(I48, I49, I50, I51) -> f3(I48, -1 + I49, I50, I51) [0 <= I49] f1(I52, I53, I54, I55) -> f2(I52, I53, I54, I55) [1 + I53 <= 0] The dependency graph for this problem is: 7 -> Where: 7) f5#(I28, I29, I30, I31) -> f6#(I28, I29, I30, I31) We have the following SCCs. DP problem for innermost termination. P = f3#(I32, I33, I34, I35) -> f1#(I32, I33, I34, I35) f1#(I48, I49, I50, I51) -> f3#(I48, -1 + I49, I50, I51) [0 <= I49] R = f11(x1, x2, x3, x4) -> f10(x1, x2, x3, x4) f10(I0, I1, I2, I3) -> f4(1, I1, I2, I3) f2(I4, I5, I6, I7) -> f5(I4, I5, 999, I7) f6(I8, I9, I10, I11) -> f5(I8, I9, -1 + I10, I11) [0 <= I10] f6(I12, I13, I14, I15) -> f9(I12, I13, I14, 999) [1 + I14 <= 0] f9(I16, I17, I18, I19) -> f7(I16, I17, I18, I19) f7(I20, I21, I22, I23) -> f9(I20, I21, I22, -1 + I23) [0 <= I23] f7(I24, I25, I26, I27) -> f8(I24, I25, I26, I27) [1 + I27 <= 0] f5(I28, I29, I30, I31) -> f6(I28, I29, I30, I31) f3(I32, I33, I34, I35) -> f1(I32, I33, I34, I35) f4(I36, I37, I38, I39) -> f3(I36, 999, I38, I39) [0 <= I36 /\ I36 <= 0] f4(I40, I41, I42, I43) -> f2(I40, I41, I42, I43) [1 + I40 <= 0] f4(I44, I45, I46, I47) -> f2(I44, I45, I46, I47) [1 <= I44] f1(I48, I49, I50, I51) -> f3(I48, -1 + I49, I50, I51) [0 <= I49] f1(I52, I53, I54, I55) -> f2(I52, I53, I54, I55) [1 + I53 <= 0] We use the basic value criterion with the projection function NU: NU[f1#(z1,z2,z3,z4)] = z2 NU[f3#(z1,z2,z3,z4)] = z2 This gives the following inequalities: ==> I33 (>! \union =) I33 0 <= I49 ==> I49 >! -1 + I49 We remove all the strictly oriented dependency pairs. DP problem for innermost termination. P = f3#(I32, I33, I34, I35) -> f1#(I32, I33, I34, I35) R = f11(x1, x2, x3, x4) -> f10(x1, x2, x3, x4) f10(I0, I1, I2, I3) -> f4(1, I1, I2, I3) f2(I4, I5, I6, I7) -> f5(I4, I5, 999, I7) f6(I8, I9, I10, I11) -> f5(I8, I9, -1 + I10, I11) [0 <= I10] f6(I12, I13, I14, I15) -> f9(I12, I13, I14, 999) [1 + I14 <= 0] f9(I16, I17, I18, I19) -> f7(I16, I17, I18, I19) f7(I20, I21, I22, I23) -> f9(I20, I21, I22, -1 + I23) [0 <= I23] f7(I24, I25, I26, I27) -> f8(I24, I25, I26, I27) [1 + I27 <= 0] f5(I28, I29, I30, I31) -> f6(I28, I29, I30, I31) f3(I32, I33, I34, I35) -> f1(I32, I33, I34, I35) f4(I36, I37, I38, I39) -> f3(I36, 999, I38, I39) [0 <= I36 /\ I36 <= 0] f4(I40, I41, I42, I43) -> f2(I40, I41, I42, I43) [1 + I40 <= 0] f4(I44, I45, I46, I47) -> f2(I44, I45, I46, I47) [1 <= I44] f1(I48, I49, I50, I51) -> f3(I48, -1 + I49, I50, I51) [0 <= I49] f1(I52, I53, I54, I55) -> f2(I52, I53, I54, I55) [1 + I53 <= 0] The dependency graph for this problem is: 8 -> Where: 8) f3#(I32, I33, I34, I35) -> f1#(I32, I33, I34, I35) We have the following SCCs.