/export/starexec/sandbox/solver/bin/starexec_run_Transition /export/starexec/sandbox/benchmark/theBenchmark.smt2 /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES DP problem for innermost termination. P = init#(x1, x2) -> f1#(rnd1, rnd2) f2#(I0, I1) -> f2#(I2, I1 - 1) [0 <= I1 - 1 /\ I1 - 1 <= I1 - 1 /\ 0 <= I0 - 1] f2#(I3, I4) -> f2#(I3 - 1, I4) [0 <= I4 - 1 /\ I4 - 1 <= I4 - 1 /\ 0 <= I3 - 1] f2#(I5, I6) -> f2#(1, I6 - 1) [I5 <= 0 /\ 0 <= I6 - 1] f1#(I7, I8) -> f2#(12, 10) R = init(x1, x2) -> f1(rnd1, rnd2) f2(I0, I1) -> f2(I2, I1 - 1) [0 <= I1 - 1 /\ I1 - 1 <= I1 - 1 /\ 0 <= I0 - 1] f2(I3, I4) -> f2(I3 - 1, I4) [0 <= I4 - 1 /\ I4 - 1 <= I4 - 1 /\ 0 <= I3 - 1] f2(I5, I6) -> f2(1, I6 - 1) [I5 <= 0 /\ 0 <= I6 - 1] f1(I7, I8) -> f2(12, 10) The dependency graph for this problem is: 0 -> 4 1 -> 1, 2, 3 2 -> 1, 2, 3 3 -> 1, 2 4 -> 1, 2 Where: 0) init#(x1, x2) -> f1#(rnd1, rnd2) 1) f2#(I0, I1) -> f2#(I2, I1 - 1) [0 <= I1 - 1 /\ I1 - 1 <= I1 - 1 /\ 0 <= I0 - 1] 2) f2#(I3, I4) -> f2#(I3 - 1, I4) [0 <= I4 - 1 /\ I4 - 1 <= I4 - 1 /\ 0 <= I3 - 1] 3) f2#(I5, I6) -> f2#(1, I6 - 1) [I5 <= 0 /\ 0 <= I6 - 1] 4) f1#(I7, I8) -> f2#(12, 10) We have the following SCCs. { 1, 2, 3 } DP problem for innermost termination. P = f2#(I0, I1) -> f2#(I2, I1 - 1) [0 <= I1 - 1 /\ I1 - 1 <= I1 - 1 /\ 0 <= I0 - 1] f2#(I3, I4) -> f2#(I3 - 1, I4) [0 <= I4 - 1 /\ I4 - 1 <= I4 - 1 /\ 0 <= I3 - 1] f2#(I5, I6) -> f2#(1, I6 - 1) [I5 <= 0 /\ 0 <= I6 - 1] R = init(x1, x2) -> f1(rnd1, rnd2) f2(I0, I1) -> f2(I2, I1 - 1) [0 <= I1 - 1 /\ I1 - 1 <= I1 - 1 /\ 0 <= I0 - 1] f2(I3, I4) -> f2(I3 - 1, I4) [0 <= I4 - 1 /\ I4 - 1 <= I4 - 1 /\ 0 <= I3 - 1] f2(I5, I6) -> f2(1, I6 - 1) [I5 <= 0 /\ 0 <= I6 - 1] f1(I7, I8) -> f2(12, 10) We use the basic value criterion with the projection function NU: NU[f2#(z1,z2)] = z2 This gives the following inequalities: 0 <= I1 - 1 /\ I1 - 1 <= I1 - 1 /\ 0 <= I0 - 1 ==> I1 >! I1 - 1 0 <= I4 - 1 /\ I4 - 1 <= I4 - 1 /\ 0 <= I3 - 1 ==> I4 (>! \union =) I4 I5 <= 0 /\ 0 <= I6 - 1 ==> I6 >! I6 - 1 We remove all the strictly oriented dependency pairs. DP problem for innermost termination. P = f2#(I3, I4) -> f2#(I3 - 1, I4) [0 <= I4 - 1 /\ I4 - 1 <= I4 - 1 /\ 0 <= I3 - 1] R = init(x1, x2) -> f1(rnd1, rnd2) f2(I0, I1) -> f2(I2, I1 - 1) [0 <= I1 - 1 /\ I1 - 1 <= I1 - 1 /\ 0 <= I0 - 1] f2(I3, I4) -> f2(I3 - 1, I4) [0 <= I4 - 1 /\ I4 - 1 <= I4 - 1 /\ 0 <= I3 - 1] f2(I5, I6) -> f2(1, I6 - 1) [I5 <= 0 /\ 0 <= I6 - 1] f1(I7, I8) -> f2(12, 10) We use the basic value criterion with the projection function NU: NU[f2#(z1,z2)] = z1 This gives the following inequalities: 0 <= I4 - 1 /\ I4 - 1 <= I4 - 1 /\ 0 <= I3 - 1 ==> I3 >! I3 - 1 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed.