/export/starexec/sandbox/solver/bin/starexec_run_Transition /export/starexec/sandbox/benchmark/theBenchmark.smt2 /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES DP problem for innermost termination. P = init#(x1, x2) -> f1#(rnd1, rnd2) f3#(I0, I1) -> f2#(I1, I0) [I0 <= I1 - 1] f3#(I2, I3) -> f3#(I2 - I3, I3) [0 <= I3 - 1 /\ 0 <= I2 - 1 /\ I3 <= I2] f2#(I4, I5) -> f3#(I4, I5) [0 <= I4 - 1 /\ 0 <= I5 - 1] f1#(I6, I7) -> f2#(I8, I9) [0 <= I6 - 1 /\ -1 <= I8 - 1 /\ -1 <= I7 - 1 /\ -1 <= I9 - 1] R = init(x1, x2) -> f1(rnd1, rnd2) f3(I0, I1) -> f2(I1, I0) [I0 <= I1 - 1] f3(I2, I3) -> f3(I2 - I3, I3) [0 <= I3 - 1 /\ 0 <= I2 - 1 /\ I3 <= I2] f2(I4, I5) -> f3(I4, I5) [0 <= I4 - 1 /\ 0 <= I5 - 1] f1(I6, I7) -> f2(I8, I9) [0 <= I6 - 1 /\ -1 <= I8 - 1 /\ -1 <= I7 - 1 /\ -1 <= I9 - 1] The dependency graph for this problem is: 0 -> 4 1 -> 3 2 -> 1, 2 3 -> 1, 2 4 -> 3 Where: 0) init#(x1, x2) -> f1#(rnd1, rnd2) 1) f3#(I0, I1) -> f2#(I1, I0) [I0 <= I1 - 1] 2) f3#(I2, I3) -> f3#(I2 - I3, I3) [0 <= I3 - 1 /\ 0 <= I2 - 1 /\ I3 <= I2] 3) f2#(I4, I5) -> f3#(I4, I5) [0 <= I4 - 1 /\ 0 <= I5 - 1] 4) f1#(I6, I7) -> f2#(I8, I9) [0 <= I6 - 1 /\ -1 <= I8 - 1 /\ -1 <= I7 - 1 /\ -1 <= I9 - 1] We have the following SCCs. { 1, 2, 3 } DP problem for innermost termination. P = f3#(I0, I1) -> f2#(I1, I0) [I0 <= I1 - 1] f3#(I2, I3) -> f3#(I2 - I3, I3) [0 <= I3 - 1 /\ 0 <= I2 - 1 /\ I3 <= I2] f2#(I4, I5) -> f3#(I4, I5) [0 <= I4 - 1 /\ 0 <= I5 - 1] R = init(x1, x2) -> f1(rnd1, rnd2) f3(I0, I1) -> f2(I1, I0) [I0 <= I1 - 1] f3(I2, I3) -> f3(I2 - I3, I3) [0 <= I3 - 1 /\ 0 <= I2 - 1 /\ I3 <= I2] f2(I4, I5) -> f3(I4, I5) [0 <= I4 - 1 /\ 0 <= I5 - 1] f1(I6, I7) -> f2(I8, I9) [0 <= I6 - 1 /\ -1 <= I8 - 1 /\ -1 <= I7 - 1 /\ -1 <= I9 - 1] We use the reverse value criterion with the projection function NU: NU[f2#(z1,z2)] = z2 NU[f3#(z1,z2)] = z2 - 1 + -1 * 0 This gives the following inequalities: I0 <= I1 - 1 ==> I1 - 1 + -1 * 0 >= I0 0 <= I3 - 1 /\ 0 <= I2 - 1 /\ I3 <= I2 ==> I3 - 1 + -1 * 0 >= I3 - 1 + -1 * 0 0 <= I4 - 1 /\ 0 <= I5 - 1 ==> I5 > I5 - 1 + -1 * 0 with I5 >= 0 We remove all the strictly oriented dependency pairs. DP problem for innermost termination. P = f3#(I0, I1) -> f2#(I1, I0) [I0 <= I1 - 1] f3#(I2, I3) -> f3#(I2 - I3, I3) [0 <= I3 - 1 /\ 0 <= I2 - 1 /\ I3 <= I2] R = init(x1, x2) -> f1(rnd1, rnd2) f3(I0, I1) -> f2(I1, I0) [I0 <= I1 - 1] f3(I2, I3) -> f3(I2 - I3, I3) [0 <= I3 - 1 /\ 0 <= I2 - 1 /\ I3 <= I2] f2(I4, I5) -> f3(I4, I5) [0 <= I4 - 1 /\ 0 <= I5 - 1] f1(I6, I7) -> f2(I8, I9) [0 <= I6 - 1 /\ -1 <= I8 - 1 /\ -1 <= I7 - 1 /\ -1 <= I9 - 1] The dependency graph for this problem is: 1 -> 2 -> 1, 2 Where: 1) f3#(I0, I1) -> f2#(I1, I0) [I0 <= I1 - 1] 2) f3#(I2, I3) -> f3#(I2 - I3, I3) [0 <= I3 - 1 /\ 0 <= I2 - 1 /\ I3 <= I2] We have the following SCCs. { 2 } DP problem for innermost termination. P = f3#(I2, I3) -> f3#(I2 - I3, I3) [0 <= I3 - 1 /\ 0 <= I2 - 1 /\ I3 <= I2] R = init(x1, x2) -> f1(rnd1, rnd2) f3(I0, I1) -> f2(I1, I0) [I0 <= I1 - 1] f3(I2, I3) -> f3(I2 - I3, I3) [0 <= I3 - 1 /\ 0 <= I2 - 1 /\ I3 <= I2] f2(I4, I5) -> f3(I4, I5) [0 <= I4 - 1 /\ 0 <= I5 - 1] f1(I6, I7) -> f2(I8, I9) [0 <= I6 - 1 /\ -1 <= I8 - 1 /\ -1 <= I7 - 1 /\ -1 <= I9 - 1] We use the basic value criterion with the projection function NU: NU[f3#(z1,z2)] = z1 This gives the following inequalities: 0 <= I3 - 1 /\ 0 <= I2 - 1 /\ I3 <= I2 ==> I2 >! I2 - I3 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed.