/export/starexec/sandbox/solver/bin/starexec_run_Transition /export/starexec/sandbox/benchmark/theBenchmark.smt2 /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES DP problem for innermost termination. P = f5#(x1, x2) -> f4#(x1, x2) f2#(I0, I1) -> f1#(I0, I0) [1 <= I0] f4#(I2, I3) -> f2#(I2, I3) f3#(I4, I5) -> f1#(I4, I5) f1#(I6, I7) -> f3#(I6, -1 + I7) [1 <= I7] f1#(I8, I9) -> f2#(-1 + I8, 1 + I9) [I9 <= 0] R = f5(x1, x2) -> f4(x1, x2) f2(I0, I1) -> f1(I0, I0) [1 <= I0] f4(I2, I3) -> f2(I2, I3) f3(I4, I5) -> f1(I4, I5) f1(I6, I7) -> f3(I6, -1 + I7) [1 <= I7] f1(I8, I9) -> f2(-1 + I8, 1 + I9) [I9 <= 0] The dependency graph for this problem is: 0 -> 2 1 -> 4 2 -> 1 3 -> 4, 5 4 -> 3 5 -> 1 Where: 0) f5#(x1, x2) -> f4#(x1, x2) 1) f2#(I0, I1) -> f1#(I0, I0) [1 <= I0] 2) f4#(I2, I3) -> f2#(I2, I3) 3) f3#(I4, I5) -> f1#(I4, I5) 4) f1#(I6, I7) -> f3#(I6, -1 + I7) [1 <= I7] 5) f1#(I8, I9) -> f2#(-1 + I8, 1 + I9) [I9 <= 0] We have the following SCCs. { 1, 3, 4, 5 } DP problem for innermost termination. P = f2#(I0, I1) -> f1#(I0, I0) [1 <= I0] f3#(I4, I5) -> f1#(I4, I5) f1#(I6, I7) -> f3#(I6, -1 + I7) [1 <= I7] f1#(I8, I9) -> f2#(-1 + I8, 1 + I9) [I9 <= 0] R = f5(x1, x2) -> f4(x1, x2) f2(I0, I1) -> f1(I0, I0) [1 <= I0] f4(I2, I3) -> f2(I2, I3) f3(I4, I5) -> f1(I4, I5) f1(I6, I7) -> f3(I6, -1 + I7) [1 <= I7] f1(I8, I9) -> f2(-1 + I8, 1 + I9) [I9 <= 0] We use the extended value criterion with the projection function NU: NU[f3#(x0,x1)] = x0 - 2 NU[f1#(x0,x1)] = x0 - 2 NU[f2#(x0,x1)] = x0 - 1 This gives the following inequalities: 1 <= I0 ==> I0 - 1 > I0 - 2 with I0 - 1 >= 0 ==> I4 - 2 >= I4 - 2 1 <= I7 ==> I6 - 2 >= I6 - 2 I9 <= 0 ==> I8 - 2 >= (-1 + I8) - 1 We remove all the strictly oriented dependency pairs. DP problem for innermost termination. P = f3#(I4, I5) -> f1#(I4, I5) f1#(I6, I7) -> f3#(I6, -1 + I7) [1 <= I7] f1#(I8, I9) -> f2#(-1 + I8, 1 + I9) [I9 <= 0] R = f5(x1, x2) -> f4(x1, x2) f2(I0, I1) -> f1(I0, I0) [1 <= I0] f4(I2, I3) -> f2(I2, I3) f3(I4, I5) -> f1(I4, I5) f1(I6, I7) -> f3(I6, -1 + I7) [1 <= I7] f1(I8, I9) -> f2(-1 + I8, 1 + I9) [I9 <= 0] The dependency graph for this problem is: 3 -> 4, 5 4 -> 3 5 -> Where: 3) f3#(I4, I5) -> f1#(I4, I5) 4) f1#(I6, I7) -> f3#(I6, -1 + I7) [1 <= I7] 5) f1#(I8, I9) -> f2#(-1 + I8, 1 + I9) [I9 <= 0] We have the following SCCs. { 3, 4 } DP problem for innermost termination. P = f3#(I4, I5) -> f1#(I4, I5) f1#(I6, I7) -> f3#(I6, -1 + I7) [1 <= I7] R = f5(x1, x2) -> f4(x1, x2) f2(I0, I1) -> f1(I0, I0) [1 <= I0] f4(I2, I3) -> f2(I2, I3) f3(I4, I5) -> f1(I4, I5) f1(I6, I7) -> f3(I6, -1 + I7) [1 <= I7] f1(I8, I9) -> f2(-1 + I8, 1 + I9) [I9 <= 0] We use the basic value criterion with the projection function NU: NU[f1#(z1,z2)] = z2 NU[f3#(z1,z2)] = z2 This gives the following inequalities: ==> I5 (>! \union =) I5 1 <= I7 ==> I7 >! -1 + I7 We remove all the strictly oriented dependency pairs. DP problem for innermost termination. P = f3#(I4, I5) -> f1#(I4, I5) R = f5(x1, x2) -> f4(x1, x2) f2(I0, I1) -> f1(I0, I0) [1 <= I0] f4(I2, I3) -> f2(I2, I3) f3(I4, I5) -> f1(I4, I5) f1(I6, I7) -> f3(I6, -1 + I7) [1 <= I7] f1(I8, I9) -> f2(-1 + I8, 1 + I9) [I9 <= 0] The dependency graph for this problem is: 3 -> Where: 3) f3#(I4, I5) -> f1#(I4, I5) We have the following SCCs.