/export/starexec/sandbox2/solver/bin/starexec_run_Transition /export/starexec/sandbox2/benchmark/theBenchmark.smt2 /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES DP problem for innermost termination. P = f5#(x1, x2) -> f4#(x1, x2) f4#(I0, I1) -> f1#(I0, I1) f3#(I2, I3) -> f2#(I2, I3) f2#(I4, I5) -> f3#(I4, -1 + I5) [1 <= I5] f2#(I6, I7) -> f1#(-1 + I6, 1 + I7) [I7 <= 0] f1#(I8, I9) -> f2#(I8, I8) [1 <= I8] R = f5(x1, x2) -> f4(x1, x2) f4(I0, I1) -> f1(I0, I1) f3(I2, I3) -> f2(I2, I3) f2(I4, I5) -> f3(I4, -1 + I5) [1 <= I5] f2(I6, I7) -> f1(-1 + I6, 1 + I7) [I7 <= 0] f1(I8, I9) -> f2(I8, I8) [1 <= I8] The dependency graph for this problem is: 0 -> 1 1 -> 5 2 -> 3, 4 3 -> 2 4 -> 5 5 -> 3 Where: 0) f5#(x1, x2) -> f4#(x1, x2) 1) f4#(I0, I1) -> f1#(I0, I1) 2) f3#(I2, I3) -> f2#(I2, I3) 3) f2#(I4, I5) -> f3#(I4, -1 + I5) [1 <= I5] 4) f2#(I6, I7) -> f1#(-1 + I6, 1 + I7) [I7 <= 0] 5) f1#(I8, I9) -> f2#(I8, I8) [1 <= I8] We have the following SCCs. { 2, 3, 4, 5 } DP problem for innermost termination. P = f3#(I2, I3) -> f2#(I2, I3) f2#(I4, I5) -> f3#(I4, -1 + I5) [1 <= I5] f2#(I6, I7) -> f1#(-1 + I6, 1 + I7) [I7 <= 0] f1#(I8, I9) -> f2#(I8, I8) [1 <= I8] R = f5(x1, x2) -> f4(x1, x2) f4(I0, I1) -> f1(I0, I1) f3(I2, I3) -> f2(I2, I3) f2(I4, I5) -> f3(I4, -1 + I5) [1 <= I5] f2(I6, I7) -> f1(-1 + I6, 1 + I7) [I7 <= 0] f1(I8, I9) -> f2(I8, I8) [1 <= I8] We use the extended value criterion with the projection function NU: NU[f1#(x0,x1)] = x0 + 1 NU[f2#(x0,x1)] = x0 NU[f3#(x0,x1)] = x0 This gives the following inequalities: ==> I2 >= I2 1 <= I5 ==> I4 >= I4 I7 <= 0 ==> I6 >= (-1 + I6) + 1 1 <= I8 ==> I8 + 1 > I8 with I8 + 1 >= 0 We remove all the strictly oriented dependency pairs. DP problem for innermost termination. P = f3#(I2, I3) -> f2#(I2, I3) f2#(I4, I5) -> f3#(I4, -1 + I5) [1 <= I5] f2#(I6, I7) -> f1#(-1 + I6, 1 + I7) [I7 <= 0] R = f5(x1, x2) -> f4(x1, x2) f4(I0, I1) -> f1(I0, I1) f3(I2, I3) -> f2(I2, I3) f2(I4, I5) -> f3(I4, -1 + I5) [1 <= I5] f2(I6, I7) -> f1(-1 + I6, 1 + I7) [I7 <= 0] f1(I8, I9) -> f2(I8, I8) [1 <= I8] The dependency graph for this problem is: 2 -> 3, 4 3 -> 2 4 -> Where: 2) f3#(I2, I3) -> f2#(I2, I3) 3) f2#(I4, I5) -> f3#(I4, -1 + I5) [1 <= I5] 4) f2#(I6, I7) -> f1#(-1 + I6, 1 + I7) [I7 <= 0] We have the following SCCs. { 2, 3 } DP problem for innermost termination. P = f3#(I2, I3) -> f2#(I2, I3) f2#(I4, I5) -> f3#(I4, -1 + I5) [1 <= I5] R = f5(x1, x2) -> f4(x1, x2) f4(I0, I1) -> f1(I0, I1) f3(I2, I3) -> f2(I2, I3) f2(I4, I5) -> f3(I4, -1 + I5) [1 <= I5] f2(I6, I7) -> f1(-1 + I6, 1 + I7) [I7 <= 0] f1(I8, I9) -> f2(I8, I8) [1 <= I8] We use the basic value criterion with the projection function NU: NU[f2#(z1,z2)] = z2 NU[f3#(z1,z2)] = z2 This gives the following inequalities: ==> I3 (>! \union =) I3 1 <= I5 ==> I5 >! -1 + I5 We remove all the strictly oriented dependency pairs. DP problem for innermost termination. P = f3#(I2, I3) -> f2#(I2, I3) R = f5(x1, x2) -> f4(x1, x2) f4(I0, I1) -> f1(I0, I1) f3(I2, I3) -> f2(I2, I3) f2(I4, I5) -> f3(I4, -1 + I5) [1 <= I5] f2(I6, I7) -> f1(-1 + I6, 1 + I7) [I7 <= 0] f1(I8, I9) -> f2(I8, I8) [1 <= I8] The dependency graph for this problem is: 2 -> Where: 2) f3#(I2, I3) -> f2#(I2, I3) We have the following SCCs.