/export/starexec/sandbox2/solver/bin/starexec_run_Transition /export/starexec/sandbox2/benchmark/theBenchmark.smt2 /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES DP problem for innermost termination. P = f7#(x1, x2, x3) -> f6#(x1, x2, x3) f6#(I0, I1, I2) -> f2#(I0, I1, I2) [I0 <= 0] f2#(I3, I4, I5) -> f5#(I3, I4, -1 + I5) [1 <= I5] f5#(I6, I7, I8) -> f1#(I6, I7, I8) [1 <= I6] f5#(I9, I10, I11) -> f4#(I9, I10, I11) [I9 <= 0] f4#(I12, I13, I14) -> f2#(1, I14, I14) f4#(I15, I16, I17) -> f2#(I15, I16, I17) [I15 <= 0] f1#(I21, I22, I23) -> f2#(I21, I22, I23) [1 + I23 <= I22] R = f7(x1, x2, x3) -> f6(x1, x2, x3) f6(I0, I1, I2) -> f2(I0, I1, I2) [I0 <= 0] f2(I3, I4, I5) -> f5(I3, I4, -1 + I5) [1 <= I5] f5(I6, I7, I8) -> f1(I6, I7, I8) [1 <= I6] f5(I9, I10, I11) -> f4(I9, I10, I11) [I9 <= 0] f4(I12, I13, I14) -> f2(1, I14, I14) f4(I15, I16, I17) -> f2(I15, I16, I17) [I15 <= 0] f1(I18, I19, I20) -> f3(I18, I19, I20) [I19 <= I20] f1(I21, I22, I23) -> f2(I21, I22, I23) [1 + I23 <= I22] The dependency graph for this problem is: 0 -> 1 1 -> 2 2 -> 3, 4 3 -> 7 4 -> 5, 6 5 -> 2 6 -> 2 7 -> 2 Where: 0) f7#(x1, x2, x3) -> f6#(x1, x2, x3) 1) f6#(I0, I1, I2) -> f2#(I0, I1, I2) [I0 <= 0] 2) f2#(I3, I4, I5) -> f5#(I3, I4, -1 + I5) [1 <= I5] 3) f5#(I6, I7, I8) -> f1#(I6, I7, I8) [1 <= I6] 4) f5#(I9, I10, I11) -> f4#(I9, I10, I11) [I9 <= 0] 5) f4#(I12, I13, I14) -> f2#(1, I14, I14) 6) f4#(I15, I16, I17) -> f2#(I15, I16, I17) [I15 <= 0] 7) f1#(I21, I22, I23) -> f2#(I21, I22, I23) [1 + I23 <= I22] We have the following SCCs. { 2, 3, 4, 5, 6, 7 } DP problem for innermost termination. P = f2#(I3, I4, I5) -> f5#(I3, I4, -1 + I5) [1 <= I5] f5#(I6, I7, I8) -> f1#(I6, I7, I8) [1 <= I6] f5#(I9, I10, I11) -> f4#(I9, I10, I11) [I9 <= 0] f4#(I12, I13, I14) -> f2#(1, I14, I14) f4#(I15, I16, I17) -> f2#(I15, I16, I17) [I15 <= 0] f1#(I21, I22, I23) -> f2#(I21, I22, I23) [1 + I23 <= I22] R = f7(x1, x2, x3) -> f6(x1, x2, x3) f6(I0, I1, I2) -> f2(I0, I1, I2) [I0 <= 0] f2(I3, I4, I5) -> f5(I3, I4, -1 + I5) [1 <= I5] f5(I6, I7, I8) -> f1(I6, I7, I8) [1 <= I6] f5(I9, I10, I11) -> f4(I9, I10, I11) [I9 <= 0] f4(I12, I13, I14) -> f2(1, I14, I14) f4(I15, I16, I17) -> f2(I15, I16, I17) [I15 <= 0] f1(I18, I19, I20) -> f3(I18, I19, I20) [I19 <= I20] f1(I21, I22, I23) -> f2(I21, I22, I23) [1 + I23 <= I22] We use the basic value criterion with the projection function NU: NU[f4#(z1,z2,z3)] = z3 NU[f1#(z1,z2,z3)] = z3 NU[f5#(z1,z2,z3)] = z3 NU[f2#(z1,z2,z3)] = z3 This gives the following inequalities: 1 <= I5 ==> I5 >! -1 + I5 1 <= I6 ==> I8 (>! \union =) I8 I9 <= 0 ==> I11 (>! \union =) I11 ==> I14 (>! \union =) I14 I15 <= 0 ==> I17 (>! \union =) I17 1 + I23 <= I22 ==> I23 (>! \union =) I23 We remove all the strictly oriented dependency pairs. DP problem for innermost termination. P = f5#(I6, I7, I8) -> f1#(I6, I7, I8) [1 <= I6] f5#(I9, I10, I11) -> f4#(I9, I10, I11) [I9 <= 0] f4#(I12, I13, I14) -> f2#(1, I14, I14) f4#(I15, I16, I17) -> f2#(I15, I16, I17) [I15 <= 0] f1#(I21, I22, I23) -> f2#(I21, I22, I23) [1 + I23 <= I22] R = f7(x1, x2, x3) -> f6(x1, x2, x3) f6(I0, I1, I2) -> f2(I0, I1, I2) [I0 <= 0] f2(I3, I4, I5) -> f5(I3, I4, -1 + I5) [1 <= I5] f5(I6, I7, I8) -> f1(I6, I7, I8) [1 <= I6] f5(I9, I10, I11) -> f4(I9, I10, I11) [I9 <= 0] f4(I12, I13, I14) -> f2(1, I14, I14) f4(I15, I16, I17) -> f2(I15, I16, I17) [I15 <= 0] f1(I18, I19, I20) -> f3(I18, I19, I20) [I19 <= I20] f1(I21, I22, I23) -> f2(I21, I22, I23) [1 + I23 <= I22] The dependency graph for this problem is: 3 -> 7 4 -> 5, 6 5 -> 6 -> 7 -> Where: 3) f5#(I6, I7, I8) -> f1#(I6, I7, I8) [1 <= I6] 4) f5#(I9, I10, I11) -> f4#(I9, I10, I11) [I9 <= 0] 5) f4#(I12, I13, I14) -> f2#(1, I14, I14) 6) f4#(I15, I16, I17) -> f2#(I15, I16, I17) [I15 <= 0] 7) f1#(I21, I22, I23) -> f2#(I21, I22, I23) [1 + I23 <= I22] We have the following SCCs.