/export/starexec/sandbox/solver/bin/starexec_run_Itrs /export/starexec/sandbox/benchmark/theBenchmark.itrs /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES DP problem for innermost termination. P = eval#(x, y) -> eval#(x, y - 1) [x + y > 0 && y >= x && x > y] eval#(I0, I1) -> eval#(I0, I1 - 1) [I0 + I1 > 0 && I1 >= I0 && I1 > I0] eval#(I2, I3) -> eval#(I2 - 1, I3) [I2 + I3 > 0 && I3 >= I2 && I2 = I3] eval#(I4, I5) -> eval#(I4 - 1, I5) [I4 + I5 > 0 && I4 > I5] R = eval(x, y) -> eval(x, y - 1) [x + y > 0 && y >= x && x > y] eval(I0, I1) -> eval(I0, I1 - 1) [I0 + I1 > 0 && I1 >= I0 && I1 > I0] eval(I2, I3) -> eval(I2 - 1, I3) [I2 + I3 > 0 && I3 >= I2 && I2 = I3] eval(I4, I5) -> eval(I4 - 1, I5) [I4 + I5 > 0 && I4 > I5] The dependency graph for this problem is: 0 -> 1 -> 1, 2 2 -> 1 3 -> 2, 3 Where: 0) eval#(x, y) -> eval#(x, y - 1) [x + y > 0 && y >= x && x > y] 1) eval#(I0, I1) -> eval#(I0, I1 - 1) [I0 + I1 > 0 && I1 >= I0 && I1 > I0] 2) eval#(I2, I3) -> eval#(I2 - 1, I3) [I2 + I3 > 0 && I3 >= I2 && I2 = I3] 3) eval#(I4, I5) -> eval#(I4 - 1, I5) [I4 + I5 > 0 && I4 > I5] We have the following SCCs. { 3 } { 1, 2 } DP problem for innermost termination. P = eval#(I0, I1) -> eval#(I0, I1 - 1) [I0 + I1 > 0 && I1 >= I0 && I1 > I0] eval#(I2, I3) -> eval#(I2 - 1, I3) [I2 + I3 > 0 && I3 >= I2 && I2 = I3] R = eval(x, y) -> eval(x, y - 1) [x + y > 0 && y >= x && x > y] eval(I0, I1) -> eval(I0, I1 - 1) [I0 + I1 > 0 && I1 >= I0 && I1 > I0] eval(I2, I3) -> eval(I2 - 1, I3) [I2 + I3 > 0 && I3 >= I2 && I2 = I3] eval(I4, I5) -> eval(I4 - 1, I5) [I4 + I5 > 0 && I4 > I5] We use the reverse value criterion with the projection function NU: NU[eval#(z1,z2)] = z1 + z2 + -1 * 0 This gives the following inequalities: I0 + I1 > 0 && I1 >= I0 && I1 > I0 ==> I0 + I1 + -1 * 0 > I0 + (I1 - 1) + -1 * 0 with I0 + I1 + -1 * 0 >= 0 I2 + I3 > 0 && I3 >= I2 && I2 = I3 ==> I2 + I3 + -1 * 0 > I2 - 1 + I3 + -1 * 0 with I2 + I3 + -1 * 0 >= 0 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. DP problem for innermost termination. P = eval#(I4, I5) -> eval#(I4 - 1, I5) [I4 + I5 > 0 && I4 > I5] R = eval(x, y) -> eval(x, y - 1) [x + y > 0 && y >= x && x > y] eval(I0, I1) -> eval(I0, I1 - 1) [I0 + I1 > 0 && I1 >= I0 && I1 > I0] eval(I2, I3) -> eval(I2 - 1, I3) [I2 + I3 > 0 && I3 >= I2 && I2 = I3] eval(I4, I5) -> eval(I4 - 1, I5) [I4 + I5 > 0 && I4 > I5] We use the reverse value criterion with the projection function NU: NU[eval#(z1,z2)] = z1 This gives the following inequalities: I4 + I5 > 0 && I4 > I5 ==> I4 > I4 - 1 with I4 >= 0 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed.