/export/starexec/sandbox2/solver/bin/starexec_run_Itrs /export/starexec/sandbox2/benchmark/theBenchmark.itrs /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES DP problem for innermost termination. P = f#(true, x, y) -> f#(x > y, x + 1, y + 2) R = f(true, x, y) -> f(x > y, x + 1, y + 2) This problem is converted using chaining, where edges between chained DPs are removed. DP problem for innermost termination. P = f#(true, x, y) -> f_1#(x, y) f_1#(x, y) -> f#(x > y, x + 1, y + 2) f_1#(x, y) -> f_1#(x + 1, y + 2) [x > y] R = f(true, x, y) -> f(x > y, x + 1, y + 2) The dependency graph for this problem is: 0 -> 2, 1 1 -> 2 -> 2, 1 Where: 0) f#(true, x, y) -> f_1#(x, y) 1) f_1#(x, y) -> f#(x > y, x + 1, y + 2) 2) f_1#(x, y) -> f_1#(x + 1, y + 2) [x > y] We have the following SCCs. { 2 } DP problem for innermost termination. P = f_1#(x, y) -> f_1#(x + 1, y + 2) [x > y] R = f(true, x, y) -> f(x > y, x + 1, y + 2) We use the reverse value criterion with the projection function NU: NU[f_1#(z1,z2)] = z1 + -1 * z2 This gives the following inequalities: x > y ==> x + -1 * y > x + 1 + -1 * (y + 2) with x + -1 * y >= 0 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed.