/export/starexec/sandbox2/solver/bin/starexec_run_Itrs /export/starexec/sandbox2/benchmark/theBenchmark.itrs /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- MAYBE DP problem for innermost termination. P = trunc#(x) -> if#(x % 2 = 0, x, x - 1) fNat#(true, I2, y) -> f#(I2 > y, trunc(I2), y + 1) fNat#(true, I2, y) -> trunc#(I2) f#(true, I3, I4) -> fNat#(I3 >= 0 && I4 >= 0, I3, I4) R = if(false, u, v) -> v if(true, I0, I1) -> I0 trunc(x) -> if(x % 2 = 0, x, x - 1) fNat(true, I2, y) -> f(I2 > y, trunc(I2), y + 1) f(true, I3, I4) -> fNat(I3 >= 0 && I4 >= 0, I3, I4) This problem is converted using chaining, where edges between chained DPs are removed. DP problem for innermost termination. P = trunc#(x) -> if#(x % 2 = 0, x, x - 1) fNat#(true, I2, y) -> f#(I2 > y, trunc(I2), y + 1) fNat#(true, I2, y) -> trunc#(I2) f#(true, I3, I4) -> f_1#(I3, I4) f_1#(I3, I4) -> fNat#(I3 >= 0 && I4 >= 0, I3, I4) f_1#(I3, I4) -> trunc#(I3) [I3 >= 0 && I4 >= 0] f_1#(I3, I4) -> f#(I3 > I4, trunc(I3), I4 + 1) [I3 >= 0 && I4 >= 0] f_1#(I3, I4) -> f_1#(trunc(I3), I4 + 1) [I3 >= 0 && I4 >= 0, I3 > I4] fNat#(true, I2, y) -> f_1#(trunc(I2), y + 1) [I2 > y] R = if(false, u, v) -> v if(true, I0, I1) -> I0 trunc(x) -> if(x % 2 = 0, x, x - 1) fNat(true, I2, y) -> f(I2 > y, trunc(I2), y + 1) f(true, I3, I4) -> fNat(I3 >= 0 && I4 >= 0, I3, I4) The dependency graph for this problem is: 0 -> 1 -> 2 -> 0 3 -> 7, 6, 5, 4 4 -> 5 -> 0 6 -> 7 -> 7, 4, 5, 6 8 -> 4, 5, 6, 7 Where: 0) trunc#(x) -> if#(x % 2 = 0, x, x - 1) 1) fNat#(true, I2, y) -> f#(I2 > y, trunc(I2), y + 1) 2) fNat#(true, I2, y) -> trunc#(I2) 3) f#(true, I3, I4) -> f_1#(I3, I4) 4) f_1#(I3, I4) -> fNat#(I3 >= 0 && I4 >= 0, I3, I4) 5) f_1#(I3, I4) -> trunc#(I3) [I3 >= 0 && I4 >= 0] 6) f_1#(I3, I4) -> f#(I3 > I4, trunc(I3), I4 + 1) [I3 >= 0 && I4 >= 0] 7) f_1#(I3, I4) -> f_1#(trunc(I3), I4 + 1) [I3 >= 0 && I4 >= 0, I3 > I4] 8) fNat#(true, I2, y) -> f_1#(trunc(I2), y + 1) [I2 > y] We have the following SCCs. { 7 } DP problem for innermost termination. P = f_1#(I3, I4) -> f_1#(trunc(I3), I4 + 1) [I3 >= 0 && I4 >= 0, I3 > I4] R = if(false, u, v) -> v if(true, I0, I1) -> I0 trunc(x) -> if(x % 2 = 0, x, x - 1) fNat(true, I2, y) -> f(I2 > y, trunc(I2), y + 1) f(true, I3, I4) -> fNat(I3 >= 0 && I4 >= 0, I3, I4)