/export/starexec/sandbox2/solver/bin/starexec_run_Itrs /export/starexec/sandbox2/benchmark/theBenchmark.itrs /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES DP problem for innermost termination. P = eval#(x, y) -> eval#(y, y) [x > 0 && x > y] eval#(I0, I1) -> eval#(I0 - 1, I1) [I0 > 0 && I1 >= I0] R = eval(x, y) -> eval(y, y) [x > 0 && x > y] eval(I0, I1) -> eval(I0 - 1, I1) [I0 > 0 && I1 >= I0] The dependency graph for this problem is: 0 -> 1 1 -> 1 Where: 0) eval#(x, y) -> eval#(y, y) [x > 0 && x > y] 1) eval#(I0, I1) -> eval#(I0 - 1, I1) [I0 > 0 && I1 >= I0] We have the following SCCs. { 1 } DP problem for innermost termination. P = eval#(I0, I1) -> eval#(I0 - 1, I1) [I0 > 0 && I1 >= I0] R = eval(x, y) -> eval(y, y) [x > 0 && x > y] eval(I0, I1) -> eval(I0 - 1, I1) [I0 > 0 && I1 >= I0] We use the reverse value criterion with the projection function NU: NU[eval#(z1,z2)] = z1 This gives the following inequalities: I0 > 0 && I1 >= I0 ==> I0 > I0 - 1 with I0 >= 0 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed.