/export/starexec/sandbox/solver/bin/starexec_run_Itrs /export/starexec/sandbox/benchmark/theBenchmark.itrs /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES DP problem for innermost termination. P = f#(true, x) -> f#(x > y && x >= 0, y) R = f(true, x) -> f(x > y && x >= 0, y) This problem is converted using chaining, where edges between chained DPs are removed. DP problem for innermost termination. P = f#(true, x) -> f_1#(x) f_1#(x) -> f#(x > y && x >= 0, y) f_1#(x) -> f_1#(y) [x > y && x >= 0] R = f(true, x) -> f(x > y && x >= 0, y) The dependency graph for this problem is: 0 -> 2, 1 1 -> 2 -> 2, 1 Where: 0) f#(true, x) -> f_1#(x) 1) f_1#(x) -> f#(x > y && x >= 0, y) 2) f_1#(x) -> f_1#(y) [x > y && x >= 0] We have the following SCCs. { 2 } DP problem for innermost termination. P = f_1#(x) -> f_1#(y) [x > y && x >= 0] R = f(true, x) -> f(x > y && x >= 0, y) We use the reverse value criterion with the projection function NU: NU[f_1#(z1)] = z1 This gives the following inequalities: x > y && x >= 0 ==> x > y with x >= 0 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed.