/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(1, 1 + Arg_1) + nat(Arg_0)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 150 ms] (2) BOUNDS(1, max(1, 1 + Arg_1) + nat(Arg_0)) (3) Loat Proof [FINISHED, 567 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval(A, B) -> Com_1(eval(A - B, B)) :|: A >= B + 1 && A >= 1 && B >= 1 eval(A, B) -> Com_1(eval(A - B, B)) :|: B >= A + 1 && A >= 1 && B >= 1 && A >= B + 1 eval(A, B) -> Com_1(eval(A, B - A)) :|: A >= B + 1 && A >= 1 && B >= 1 && B >= A eval(A, B) -> Com_1(eval(A, B - A)) :|: B >= A + 1 && A >= 1 && B >= 1 && B >= A start(A, B) -> Com_1(eval(A, B)) :|: TRUE The start-symbols are:[start_2] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, 1+max([0, Arg_1])+max([0, Arg_0]) {O(n)}) Initial Complexity Problem: Start: start Program_Vars: Arg_0, Arg_1 Temp_Vars: Locations: eval, start Transitions: eval(Arg_0,Arg_1) -> eval(Arg_0-Arg_1,Arg_1):|:Arg_1+1 <= Arg_0 && 1 <= Arg_0 && 1 <= Arg_1 eval(Arg_0,Arg_1) -> eval(Arg_0,Arg_1-Arg_0):|:Arg_0+1 <= Arg_1 && 1 <= Arg_0 && 1 <= Arg_1 && Arg_0 <= Arg_1 start(Arg_0,Arg_1) -> eval(Arg_0,Arg_1):|: Timebounds: Overall timebound: 1+max([0, Arg_1])+max([0, Arg_0]) {O(n)} 0: eval->eval: max([0, Arg_0]) {O(n)} 3: eval->eval: max([0, Arg_1]) {O(n)} 4: start->eval: 1 {O(1)} Costbounds: Overall costbound: 1+max([0, Arg_1])+max([0, Arg_0]) {O(n)} 0: eval->eval: max([0, Arg_0]) {O(n)} 3: eval->eval: max([0, Arg_1]) {O(n)} 4: start->eval: 1 {O(1)} Sizebounds: `Lower: 0: eval->eval, Arg_0: 1 {O(1)} 0: eval->eval, Arg_1: 1 {O(1)} 3: eval->eval, Arg_0: 1 {O(1)} 3: eval->eval, Arg_1: 1 {O(1)} 4: start->eval, Arg_0: Arg_0 {O(n)} 4: start->eval, Arg_1: Arg_1 {O(n)} `Upper: 0: eval->eval, Arg_0: Arg_0 {O(n)} 0: eval->eval, Arg_1: Arg_1 {O(n)} 3: eval->eval, Arg_0: Arg_0 {O(n)} 3: eval->eval, Arg_1: Arg_1 {O(n)} 4: start->eval, Arg_0: Arg_0 {O(n)} 4: start->eval, Arg_1: Arg_1 {O(n)} ---------------------------------------- (2) BOUNDS(1, max(1, 1 + Arg_1) + nat(Arg_0)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: start 0: eval -> eval : A'=A-B, [ A>=1+B && A>=1 && B>=1 ], cost: 1 1: eval -> eval : A'=A-B, [ B>=1+A && A>=1 && B>=1 && A>=1+B ], cost: 1 2: eval -> eval : B'=-A+B, [ A>=1+B && A>=1 && B>=1 && B>=A ], cost: 1 3: eval -> eval : B'=-A+B, [ B>=1+A && A>=1 && B>=1 && B>=A ], cost: 1 4: start -> eval : [], cost: 1 Removed rules with unsatisfiable guard: Start location: start 0: eval -> eval : A'=A-B, [ A>=1+B && A>=1 && B>=1 ], cost: 1 3: eval -> eval : B'=-A+B, [ B>=1+A && A>=1 && B>=1 && B>=A ], cost: 1 4: start -> eval : [], cost: 1 Simplified all rules, resulting in: Start location: start 0: eval -> eval : A'=A-B, [ A>=1+B && A>=1 && B>=1 ], cost: 1 3: eval -> eval : B'=-A+B, [ B>=1+A && A>=1 ], cost: 1 4: start -> eval : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 0: eval -> eval : A'=A-B, [ A>=1+B && A>=1 && B>=1 ], cost: 1 3: eval -> eval : B'=-A+B, [ B>=1+A && A>=1 ], cost: 1 Accelerated rule 0 with backward acceleration, yielding the new rule 5. Accelerated rule 3 with backward acceleration, yielding the new rule 6. Removing the simple loops: 0 3. Accelerated all simple loops using metering functions (where possible): Start location: start 5: eval -> eval : A'=-k*B+A, [ A>=1+B && A>=1 && B>=1 && k>0 && -(-1+k)*B+A>=1+B && -(-1+k)*B+A>=1 ], cost: k 6: eval -> eval : B'=B-A*k_1, [ B>=1+A && A>=1 && k_1>0 && -A*(-1+k_1)+B>=1+A ], cost: k_1 4: start -> eval : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start 4: start -> eval : [], cost: 1 7: start -> eval : A'=-k*B+A, [ A>=1+B && A>=1 && B>=1 && k>0 && -(-1+k)*B+A>=1+B && -(-1+k)*B+A>=1 ], cost: 1+k 8: start -> eval : B'=B-A*k_1, [ B>=1+A && A>=1 && k_1>0 && -A*(-1+k_1)+B>=1+A ], cost: 1+k_1 Removed unreachable locations (and leaf rules with constant cost): Start location: start 7: start -> eval : A'=-k*B+A, [ A>=1+B && A>=1 && B>=1 && k>0 && -(-1+k)*B+A>=1+B && -(-1+k)*B+A>=1 ], cost: 1+k 8: start -> eval : B'=B-A*k_1, [ B>=1+A && A>=1 && k_1>0 && -A*(-1+k_1)+B>=1+A ], cost: 1+k_1 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: start 7: start -> eval : A'=-k*B+A, [ A>=1+B && A>=1 && B>=1 && k>0 && -(-1+k)*B+A>=1+B && -(-1+k)*B+A>=1 ], cost: 1+k 8: start -> eval : B'=B-A*k_1, [ B>=1+A && A>=1 && k_1>0 && -A*(-1+k_1)+B>=1+A ], cost: 1+k_1 Computing asymptotic complexity for rule 7 Simplified the guard: 7: start -> eval : A'=-k*B+A, [ B>=1 && k>0 && -(-1+k)*B+A>=1+B ], cost: 1+k Solved the limit problem by the following transformations: Created initial limit problem: -(-1+k)*B+A-B (+/+!), k (+/+!), 1+k (+), B (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {k==n,A==2*n,B==1} resulting limit problem: [solved] Solved the limit problem by the following transformations: Created initial limit problem: -(-1+k)*B+A-B (+/+!), k (+/+!), 1+k (+), B (+/+!) [not solved] applying transformation rule (C) using substitution {B==1} resulting limit problem: 1 (+/+!), k (+/+!), 1+k (+), -k+A (+/+!) [not solved] applying transformation rule (B), deleting 1 (+/+!) resulting limit problem: k (+/+!), 1+k (+), -k+A (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {k==n,A==2*n} resulting limit problem: [solved] Solution: k / n A / 2*n B / 1 Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Computing asymptotic complexity for rule 8 Simplified the guard: 8: start -> eval : B'=B-A*k_1, [ A>=1 && k_1>0 && -A*(-1+k_1)+B>=1+A ], cost: 1+k_1 Solved the limit problem by the following transformations: Created initial limit problem: 1+k_1 (+), -A*(-1+k_1)-A+B (+/+!), A (+/+!), k_1 (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==1,k_1==n,B==2*n} resulting limit problem: [solved] Solved the limit problem by the following transformations: Created initial limit problem: 1+k_1 (+), -A*(-1+k_1)-A+B (+/+!), A (+/+!), k_1 (+/+!) [not solved] applying transformation rule (C) using substitution {A==1} resulting limit problem: 1 (+/+!), 1+k_1 (+), -k_1+B (+/+!), k_1 (+/+!) [not solved] applying transformation rule (B), deleting 1 (+/+!) resulting limit problem: 1+k_1 (+), -k_1+B (+/+!), k_1 (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {k_1==n,B==2*n} resulting limit problem: [solved] Solution: A / 1 k_1 / n B / 2*n Resulting cost 1+n has complexity: Poly(n^1) Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1+k Rule guard: [ B>=1 && k>0 && -(-1+k)*B+A>=1+B ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)