/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, max(1, 3 + 2 * Arg_0) + nat(2 * Arg_0) + nat(Arg_0 * max(2 * Arg_0, -2) + max(2 * Arg_0, -2))). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 247 ms] (2) BOUNDS(1, max(1, 3 + 2 * Arg_0) + nat(2 * Arg_0) + nat(Arg_0 * max(2 * Arg_0, -2) + max(2 * Arg_0, -2))) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval1(A, B) -> Com_1(eval2(A, 1)) :|: A >= 0 eval2(A, B) -> Com_1(eval2(A, 2 * B)) :|: A >= 0 && B >= 1 && A >= B + 1 eval2(A, B) -> Com_1(eval1(A - 1, B)) :|: A >= 0 && B >= 1 && B >= A start(A, B) -> Com_1(eval1(A, B)) :|: TRUE The start-symbols are:[start_2] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, 1+2*max([0, 1+Arg_0])+max([0, 2*Arg_0])+max([0, (1+Arg_0)*max([-2, 2*Arg_0])]) {O(n^2)}) Initial Complexity Problem: Start: start Program_Vars: Arg_0, Arg_1 Temp_Vars: Locations: eval1, eval2, start Transitions: eval1(Arg_0,Arg_1) -> eval2(Arg_0,1):|:0 <= Arg_0 eval2(Arg_0,Arg_1) -> eval1(Arg_0-1,Arg_1):|:1 <= Arg_1 && 1 <= Arg_0+Arg_1 && 0 <= Arg_0 && 0 <= Arg_0 && 1 <= Arg_1 && Arg_0 <= Arg_1 eval2(Arg_0,Arg_1) -> eval2(Arg_0,(2)*Arg_1):|:1 <= Arg_1 && 1 <= Arg_0+Arg_1 && 0 <= Arg_0 && 0 <= Arg_0 && 1 <= Arg_1 && Arg_1+1 <= Arg_0 start(Arg_0,Arg_1) -> eval1(Arg_0,Arg_1):|: Timebounds: Overall timebound: 1+2*max([0, 1+Arg_0])+max([0, 2*Arg_0])+max([0, (1+Arg_0)*max([-2, 2*Arg_0])]) {O(n^2)} 0: eval1->eval2: max([0, 1+Arg_0]) {O(n)} 1: eval2->eval2: max([0, 2*Arg_0])+max([0, (1+Arg_0)*max([-2, 2*Arg_0])]) {O(n^2)} 2: eval2->eval1: max([0, 1+Arg_0]) {O(n)} 3: start->eval1: 1 {O(1)} Costbounds: Overall costbound: 1+2*max([0, 1+Arg_0])+max([0, 2*Arg_0])+max([0, (1+Arg_0)*max([-2, 2*Arg_0])]) {O(n^2)} 0: eval1->eval2: max([0, 1+Arg_0]) {O(n)} 1: eval2->eval2: max([0, 2*Arg_0])+max([0, (1+Arg_0)*max([-2, 2*Arg_0])]) {O(n^2)} 2: eval2->eval1: max([0, 1+Arg_0]) {O(n)} 3: start->eval1: 1 {O(1)} Sizebounds: `Lower: 0: eval1->eval2, Arg_0: 0 {O(1)} 0: eval1->eval2, Arg_1: 1 {O(1)} 1: eval2->eval2, Arg_0: 2 {O(1)} 1: eval2->eval2, Arg_1: 2 {O(1)} 2: eval2->eval1, Arg_0: -1 {O(1)} 2: eval2->eval1, Arg_1: 1 {O(1)} 3: start->eval1, Arg_0: Arg_0 {O(n)} 3: start->eval1, Arg_1: Arg_1 {O(n)} `Upper: 0: eval1->eval2, Arg_0: Arg_0 {O(n)} 0: eval1->eval2, Arg_1: 1 {O(1)} 1: eval2->eval2, Arg_0: Arg_0 {O(n)} 1: eval2->eval2, Arg_1: 2^(max([0, 2*Arg_0])+max([0, (1+Arg_0)*max([-2, 2*Arg_0])])) {O(EXP)} 2: eval2->eval1, Arg_0: Arg_0 {O(n)} 2: eval2->eval1, Arg_1: max([1, 2^(max([0, 2*Arg_0])+max([0, (1+Arg_0)*max([-2, 2*Arg_0])]))]) {O(EXP)} 3: start->eval1, Arg_0: Arg_0 {O(n)} 3: start->eval1, Arg_1: Arg_1 {O(n)} ---------------------------------------- (2) BOUNDS(1, max(1, 3 + 2 * Arg_0) + nat(2 * Arg_0) + nat(Arg_0 * max(2 * Arg_0, -2) + max(2 * Arg_0, -2)))