/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(1, 1 + Arg_0)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 153 ms] (2) BOUNDS(1, max(1, 1 + Arg_0)) (3) Loat Proof [FINISHED, 227 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: zip3(A, B, C) -> Com_1(zip3(A - 1, B - 1, C - 1)) :|: A >= 1 && B >= 1 && C >= 1 group3(A, B, C) -> Com_1(group3(A - 3, B, C)) :|: A >= 4 start(A, B, C) -> Com_1(zip3(A, B, C)) :|: TRUE The start-symbols are:[start_3] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, max([1, 1+Arg_0]) {O(n)}) Initial Complexity Problem: Start: start Program_Vars: Arg_0, Arg_1, Arg_2 Temp_Vars: Locations: start, zip3 Transitions: start(Arg_0,Arg_1,Arg_2) -> zip3(Arg_0,Arg_1,Arg_2):|: zip3(Arg_0,Arg_1,Arg_2) -> zip3(Arg_0-1,Arg_1-1,Arg_2-1):|:1 <= Arg_0 && 1 <= Arg_1 && 1 <= Arg_2 Timebounds: Overall timebound: max([1, 1+Arg_0]) {O(n)} 2: start->zip3: 1 {O(1)} 0: zip3->zip3: max([0, Arg_0]) {O(n)} Costbounds: Overall costbound: max([1, 1+Arg_0]) {O(n)} 2: start->zip3: 1 {O(1)} 0: zip3->zip3: max([0, Arg_0]) {O(n)} Sizebounds: `Lower: 2: start->zip3, Arg_0: Arg_0 {O(n)} 2: start->zip3, Arg_1: Arg_1 {O(n)} 2: start->zip3, Arg_2: Arg_2 {O(n)} 0: zip3->zip3, Arg_0: 0 {O(1)} 0: zip3->zip3, Arg_1: 0 {O(1)} 0: zip3->zip3, Arg_2: 0 {O(1)} `Upper: 2: start->zip3, Arg_0: Arg_0 {O(n)} 2: start->zip3, Arg_1: Arg_1 {O(n)} 2: start->zip3, Arg_2: Arg_2 {O(n)} 0: zip3->zip3, Arg_0: Arg_0 {O(n)} 0: zip3->zip3, Arg_1: Arg_1 {O(n)} 0: zip3->zip3, Arg_2: Arg_2 {O(n)} ---------------------------------------- (2) BOUNDS(1, max(1, 1 + Arg_0)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: start 0: zip3 -> zip3 : A'=-1+A, B'=-1+B, C'=-1+C, [ A>=1 && B>=1 && C>=1 ], cost: 1 1: group3 -> group3 : A'=-3+A, [ A>=4 ], cost: 1 2: start -> zip3 : [], cost: 1 Removed unreachable and leaf rules: Start location: start 0: zip3 -> zip3 : A'=-1+A, B'=-1+B, C'=-1+C, [ A>=1 && B>=1 && C>=1 ], cost: 1 2: start -> zip3 : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 0: zip3 -> zip3 : A'=-1+A, B'=-1+B, C'=-1+C, [ A>=1 && B>=1 && C>=1 ], cost: 1 Accelerated rule 0 with backward acceleration, yielding the new rule 3. Accelerated rule 0 with backward acceleration, yielding the new rule 4. Accelerated rule 0 with backward acceleration, yielding the new rule 5. Removing the simple loops: 0. Accelerated all simple loops using metering functions (where possible): Start location: start 3: zip3 -> zip3 : A'=0, B'=-A+B, C'=C-A, [ A>=1 && B>=1 && C>=1 && 1-A+B>=1 && 1+C-A>=1 ], cost: A 4: zip3 -> zip3 : A'=A-B, B'=0, C'=C-B, [ A>=1 && B>=1 && C>=1 && 1+A-B>=1 && 1+C-B>=1 ], cost: B 5: zip3 -> zip3 : A'=-C+A, B'=-C+B, C'=0, [ A>=1 && B>=1 && C>=1 && 1-C+A>=1 && 1-C+B>=1 ], cost: C 2: start -> zip3 : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start 2: start -> zip3 : [], cost: 1 6: start -> zip3 : A'=0, B'=-A+B, C'=C-A, [ A>=1 && B>=1 && C>=1 && 1-A+B>=1 && 1+C-A>=1 ], cost: 1+A 7: start -> zip3 : A'=A-B, B'=0, C'=C-B, [ A>=1 && B>=1 && C>=1 && 1+A-B>=1 && 1+C-B>=1 ], cost: 1+B 8: start -> zip3 : A'=-C+A, B'=-C+B, C'=0, [ A>=1 && B>=1 && C>=1 && 1-C+A>=1 && 1-C+B>=1 ], cost: 1+C Removed unreachable locations (and leaf rules with constant cost): Start location: start 6: start -> zip3 : A'=0, B'=-A+B, C'=C-A, [ A>=1 && B>=1 && C>=1 && 1-A+B>=1 && 1+C-A>=1 ], cost: 1+A 7: start -> zip3 : A'=A-B, B'=0, C'=C-B, [ A>=1 && B>=1 && C>=1 && 1+A-B>=1 && 1+C-B>=1 ], cost: 1+B 8: start -> zip3 : A'=-C+A, B'=-C+B, C'=0, [ A>=1 && B>=1 && C>=1 && 1-C+A>=1 && 1-C+B>=1 ], cost: 1+C ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: start 6: start -> zip3 : A'=0, B'=-A+B, C'=C-A, [ A>=1 && B>=1 && C>=1 && 1-A+B>=1 && 1+C-A>=1 ], cost: 1+A 7: start -> zip3 : A'=A-B, B'=0, C'=C-B, [ A>=1 && B>=1 && C>=1 && 1+A-B>=1 && 1+C-B>=1 ], cost: 1+B 8: start -> zip3 : A'=-C+A, B'=-C+B, C'=0, [ A>=1 && B>=1 && C>=1 && 1-C+A>=1 && 1-C+B>=1 ], cost: 1+C Computing asymptotic complexity for rule 6 Solved the limit problem by the following transformations: Created initial limit problem: C (+/+!), A (+/+!), 1-A+B (+/+!), 1+C-A (+/+!), B (+/+!), 1+A (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {C==2*n,A==n,B==1+n} resulting limit problem: [solved] Solution: C / 2*n A / n B / 1+n Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1+A Rule guard: [ A>=1 && B>=1 && C>=1 && 1-A+B>=1 && 1+C-A>=1 ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)