/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(3, 3 + 2 * Arg_1)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 138 ms] (2) BOUNDS(1, max(3, 3 + 2 * Arg_1)) (3) Loat Proof [FINISHED, 215 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: div(A, B) -> Com_1(end(A, B)) :|: 0 >= A div(A, B) -> Com_1(end(A, B)) :|: A >= B div(A, B) -> Com_1(div(A, B - A)) :|: B >= A + 1 && A >= 1 start(A, B) -> Com_1(div(A, B)) :|: TRUE The start-symbols are:[start_2] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, max([3, 3+2*Arg_1]) {O(n)}) Initial Complexity Problem: Start: start Program_Vars: Arg_0, Arg_1 Temp_Vars: Locations: div, end, start Transitions: div(Arg_0,Arg_1) -> div(Arg_0,Arg_1-Arg_0):|:Arg_0+1 <= Arg_1 && 1 <= Arg_0 div(Arg_0,Arg_1) -> end(Arg_0,Arg_1):|:Arg_0 <= 0 div(Arg_0,Arg_1) -> end(Arg_0,Arg_1):|:Arg_1 <= Arg_0 start(Arg_0,Arg_1) -> div(Arg_0,Arg_1):|: Timebounds: Overall timebound: max([3, 3+2*Arg_1]) {O(n)} 0: div->end: 1 {O(1)} 1: div->end: 1 {O(1)} 2: div->div: max([0, 2*Arg_1]) {O(n)} 3: start->div: 1 {O(1)} Costbounds: Overall costbound: max([3, 3+2*Arg_1]) {O(n)} 0: div->end: 1 {O(1)} 1: div->end: 1 {O(1)} 2: div->div: max([0, 2*Arg_1]) {O(n)} 3: start->div: 1 {O(1)} Sizebounds: `Lower: 0: div->end, Arg_0: Arg_0 {O(n)} 0: div->end, Arg_1: Arg_1 {O(n)} 1: div->end, Arg_0: min([1, Arg_0]) {O(n)} 1: div->end, Arg_1: min([1, Arg_1]) {O(n)} 2: div->div, Arg_0: 1 {O(1)} 2: div->div, Arg_1: 1 {O(1)} 3: start->div, Arg_0: Arg_0 {O(n)} 3: start->div, Arg_1: Arg_1 {O(n)} `Upper: 0: div->end, Arg_0: 0 {O(1)} 0: div->end, Arg_1: Arg_1 {O(n)} 1: div->end, Arg_0: Arg_0 {O(n)} 1: div->end, Arg_1: Arg_1 {O(n)} 2: div->div, Arg_0: Arg_0 {O(n)} 2: div->div, Arg_1: Arg_1 {O(n)} 3: start->div, Arg_0: Arg_0 {O(n)} 3: start->div, Arg_1: Arg_1 {O(n)} ---------------------------------------- (2) BOUNDS(1, max(3, 3 + 2 * Arg_1)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: start 0: div -> end : [ 0>=A ], cost: 1 1: div -> end : [ A>=B ], cost: 1 2: div -> div : B'=-A+B, [ B>=1+A && A>=1 ], cost: 1 3: start -> div : [], cost: 1 Removed unreachable and leaf rules: Start location: start 2: div -> div : B'=-A+B, [ B>=1+A && A>=1 ], cost: 1 3: start -> div : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 2: div -> div : B'=-A+B, [ B>=1+A && A>=1 ], cost: 1 Accelerated rule 2 with backward acceleration, yielding the new rule 4. Removing the simple loops: 2. Accelerated all simple loops using metering functions (where possible): Start location: start 4: div -> div : B'=-k*A+B, [ B>=1+A && A>=1 && k>0 && -(-1+k)*A+B>=1+A ], cost: k 3: start -> div : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start 3: start -> div : [], cost: 1 5: start -> div : B'=-k*A+B, [ B>=1+A && A>=1 && k>0 && -(-1+k)*A+B>=1+A ], cost: 1+k Removed unreachable locations (and leaf rules with constant cost): Start location: start 5: start -> div : B'=-k*A+B, [ B>=1+A && A>=1 && k>0 && -(-1+k)*A+B>=1+A ], cost: 1+k ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: start 5: start -> div : B'=-k*A+B, [ B>=1+A && A>=1 && k>0 && -(-1+k)*A+B>=1+A ], cost: 1+k Computing asymptotic complexity for rule 5 Simplified the guard: 5: start -> div : B'=-k*A+B, [ A>=1 && k>0 && -(-1+k)*A+B>=1+A ], cost: 1+k Solved the limit problem by the following transformations: Created initial limit problem: -(-1+k)*A-A+B (+/+!), k (+/+!), 1+k (+), A (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {k==n,A==1,B==2*n} resulting limit problem: [solved] Solved the limit problem by the following transformations: Created initial limit problem: -(-1+k)*A-A+B (+/+!), k (+/+!), 1+k (+), A (+/+!) [not solved] applying transformation rule (C) using substitution {A==1} resulting limit problem: 1 (+/+!), -k+B (+/+!), k (+/+!), 1+k (+) [not solved] applying transformation rule (B), deleting 1 (+/+!) resulting limit problem: -k+B (+/+!), k (+/+!), 1+k (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {k==n,B==1+n} resulting limit problem: [solved] Solution: k / n A / 1 B / 2*n Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1+k Rule guard: [ A>=1 && k>0 && -(-1+k)*A+B>=1+A ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)