/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^3), O(n^5)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^3, nat(Arg_1^2) + nat(max(Arg_1 * (nat(Arg_1^2) * nat(nat(Arg_1^2) + nat(Arg_1)) + nat(Arg_1) * nat(nat(Arg_1^2) + nat(Arg_1))) + Arg_1 * nat(nat(Arg_1^2) + nat(Arg_1)), Arg_1 * nat(nat(Arg_1^2) + nat(Arg_1)) + Arg_1 * (-1 * min(-1 * Arg_1^2, 0) * nat(nat(Arg_1^2) + nat(Arg_1)) + nat(Arg_1) * nat(nat(Arg_1^2) + nat(Arg_1))), 0) + nat(nat(nat(Arg_1^2) + nat(Arg_1)) + nat(Arg_1^2) * nat(nat(Arg_1^2) + nat(Arg_1)) + nat(Arg_1) * nat(nat(Arg_1^2) + nat(Arg_1)))) + max(2, 3 + 2 * Arg_1) + nat(2 * Arg_1)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 1010 ms] (2) BOUNDS(1, nat(Arg_1^2) + nat(max(Arg_1 * (nat(Arg_1^2) * nat(nat(Arg_1^2) + nat(Arg_1)) + nat(Arg_1) * nat(nat(Arg_1^2) + nat(Arg_1))) + Arg_1 * nat(nat(Arg_1^2) + nat(Arg_1)), Arg_1 * nat(nat(Arg_1^2) + nat(Arg_1)) + Arg_1 * (-1 * min(-1 * Arg_1^2, 0) * nat(nat(Arg_1^2) + nat(Arg_1)) + nat(Arg_1) * nat(nat(Arg_1^2) + nat(Arg_1))), 0) + nat(nat(nat(Arg_1^2) + nat(Arg_1)) + nat(Arg_1^2) * nat(nat(Arg_1^2) + nat(Arg_1)) + nat(Arg_1) * nat(nat(Arg_1^2) + nat(Arg_1)))) + max(2, 3 + 2 * Arg_1) + nat(2 * Arg_1)) (3) Loat Proof [FINISHED, 471 ms] (4) BOUNDS(n^3, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: l0(A, B, C, D) -> Com_1(l1(0, B, C, D)) :|: TRUE l1(A, B, C, D) -> Com_1(l2(A, B, 0, 0)) :|: B > 0 l2(A, B, C, D) -> Com_1(l2(A, B, C + 1, D + C)) :|: C < B l2(A, B, C, D) -> Com_1(l1(A + D, B - 1, C, D)) :|: C >= B l1(A, B, C, D) -> Com_1(l3(A, B, C, D)) :|: B <= 0 l3(A, B, C, D) -> Com_1(l3(A - 1, B, C, D)) :|: A > 0 The start-symbols are:[l0_4] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, max([0, max([0, max([(max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])]), max([(max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]), max([(max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])]), (max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])])])])+max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])])+max([0, max([Arg_1*(min([-((min([0, -(-(Arg_1)*-(Arg_1))])-max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])])), min([-((min([0, -(-(Arg_1)*-(Arg_1))])-max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])), min([-((min([0, -(Arg_1*Arg_1)])-max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])])), -((min([0, -(Arg_1*Arg_1)])-max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]))])])])+max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])])), Arg_1*(max([(max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])]), max([(max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]), max([(max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])]), (max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])])])])+max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]))])])])+max([0, Arg_1])+max([0, Arg_1])+max([2, 3+2*Arg_1])+max([0, Arg_1*Arg_1]) {O(n^5)}) Initial Complexity Problem: Start: l0 Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3 Temp_Vars: Locations: l0, l1, l2, l3 Transitions: l0(Arg_0,Arg_1,Arg_2,Arg_3) -> l1(0,Arg_1,Arg_2,Arg_3):|: l1(Arg_0,Arg_1,Arg_2,Arg_3) -> l2(Arg_0,Arg_1,0,0):|:0 <= Arg_0 && 1 <= Arg_1 l1(Arg_0,Arg_1,Arg_2,Arg_3) -> l3(Arg_0,Arg_1,Arg_2,Arg_3):|:0 <= Arg_0 && Arg_1 <= 0 l2(Arg_0,Arg_1,Arg_2,Arg_3) -> l1(Arg_0+Arg_3,Arg_1-1,Arg_2,Arg_3):|:0 <= Arg_3 && 0 <= Arg_2+Arg_3 && 1 <= Arg_1+Arg_3 && 0 <= Arg_0+Arg_3 && 0 <= Arg_2 && 1 <= Arg_1+Arg_2 && 0 <= Arg_0+Arg_2 && 1 <= Arg_1 && 1 <= Arg_0+Arg_1 && 0 <= Arg_0 && Arg_1 <= Arg_2 l2(Arg_0,Arg_1,Arg_2,Arg_3) -> l2(Arg_0,Arg_1,Arg_2+1,Arg_3+Arg_2):|:0 <= Arg_3 && 0 <= Arg_2+Arg_3 && 1 <= Arg_1+Arg_3 && 0 <= Arg_0+Arg_3 && 0 <= Arg_2 && 1 <= Arg_1+Arg_2 && 0 <= Arg_0+Arg_2 && 1 <= Arg_1 && 1 <= Arg_0+Arg_1 && 0 <= Arg_0 && Arg_2+1 <= Arg_1 l3(Arg_0,Arg_1,Arg_2,Arg_3) -> l3(Arg_0-1,Arg_1,Arg_2,Arg_3):|:Arg_1 <= 0 && Arg_1 <= Arg_0 && 0 <= Arg_0 && 1 <= Arg_0 Timebounds: Overall timebound: max([0, max([0, max([(max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])]), max([(max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]), max([(max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])]), (max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])])])])+max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])])+max([0, max([Arg_1*(min([-((min([0, -(-(Arg_1)*-(Arg_1))])-max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])])), min([-((min([0, -(-(Arg_1)*-(Arg_1))])-max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])), min([-((min([0, -(Arg_1*Arg_1)])-max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])])), -((min([0, -(Arg_1*Arg_1)])-max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]))])])])+max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])])), Arg_1*(max([(max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])]), max([(max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]), max([(max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])]), (max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])])])])+max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]))])])])+max([0, Arg_1])+max([0, Arg_1])+max([2, 3+2*Arg_1])+max([0, Arg_1*Arg_1]) {O(n^5)} 0: l0->l1: 1 {O(1)} 1: l1->l2: max([0, 1+2*Arg_1]) {O(n)} 4: l1->l3: 1 {O(1)} 2: l2->l2: max([0, Arg_1*Arg_1])+max([0, Arg_1]) {O(n^2)} 3: l2->l1: max([0, Arg_1]) {O(n)} 5: l3->l3: max([0, max([0, max([(max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])]), max([(max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]), max([(max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])]), (max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])])])])+max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])])+max([0, max([Arg_1*(min([-((min([0, -(-(Arg_1)*-(Arg_1))])-max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])])), min([-((min([0, -(-(Arg_1)*-(Arg_1))])-max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])), min([-((min([0, -(Arg_1*Arg_1)])-max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])])), -((min([0, -(Arg_1*Arg_1)])-max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]))])])])+max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])])), Arg_1*(max([(max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])]), max([(max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]), max([(max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])]), (max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])])])])+max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]))])])]) {O(n^5)} Costbounds: Overall costbound: max([0, max([0, max([(max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])]), max([(max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]), max([(max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])]), (max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])])])])+max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])])+max([0, max([Arg_1*(min([-((min([0, -(-(Arg_1)*-(Arg_1))])-max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])])), min([-((min([0, -(-(Arg_1)*-(Arg_1))])-max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])), min([-((min([0, -(Arg_1*Arg_1)])-max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])])), -((min([0, -(Arg_1*Arg_1)])-max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]))])])])+max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])])), Arg_1*(max([(max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])]), max([(max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]), max([(max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])]), (max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])])])])+max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]))])])])+max([0, Arg_1])+max([0, Arg_1])+max([2, 3+2*Arg_1])+max([0, Arg_1*Arg_1]) {O(n^5)} 0: l0->l1: 1 {O(1)} 1: l1->l2: max([0, 1+2*Arg_1]) {O(n)} 4: l1->l3: 1 {O(1)} 2: l2->l2: max([0, Arg_1*Arg_1])+max([0, Arg_1]) {O(n^2)} 3: l2->l1: max([0, Arg_1]) {O(n)} 5: l3->l3: max([0, max([0, max([(max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])]), max([(max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]), max([(max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])]), (max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])])])])+max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])])+max([0, max([Arg_1*(min([-((min([0, -(-(Arg_1)*-(Arg_1))])-max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])])), min([-((min([0, -(-(Arg_1)*-(Arg_1))])-max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])), min([-((min([0, -(Arg_1*Arg_1)])-max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])])), -((min([0, -(Arg_1*Arg_1)])-max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]))])])])+max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])])), Arg_1*(max([(max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])]), max([(max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]), max([(max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, -(Arg_1)*-(Arg_1)])+max([0, Arg_1])]), (max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])])])])+max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]))])])]) {O(n^5)} Sizebounds: `Lower: 0: l0->l1, Arg_0: 0 {O(1)} 0: l0->l1, Arg_1: Arg_1 {O(n)} 0: l0->l1, Arg_2: Arg_2 {O(n)} 0: l0->l1, Arg_3: Arg_3 {O(n)} 1: l1->l2, Arg_0: 0 {O(1)} 1: l1->l2, Arg_1: 1 {O(1)} 1: l1->l2, Arg_2: 0 {O(1)} 1: l1->l2, Arg_3: 0 {O(1)} 4: l1->l3, Arg_0: 0 {O(1)} 4: l1->l3, Arg_1: min([0, Arg_1]) {O(n)} 4: l1->l3, Arg_2: min([1, Arg_2]) {O(n)} 4: l1->l3, Arg_3: min([0, Arg_3]) {O(n)} 2: l2->l2, Arg_0: 0 {O(1)} 2: l2->l2, Arg_1: 1 {O(1)} 2: l2->l2, Arg_2: 1 {O(1)} 2: l2->l2, Arg_3: 0 {O(1)} 3: l2->l1, Arg_0: 0 {O(1)} 3: l2->l1, Arg_1: 0 {O(1)} 3: l2->l1, Arg_2: 1 {O(1)} 3: l2->l1, Arg_3: 0 {O(1)} 5: l3->l3, Arg_0: 0 {O(1)} 5: l3->l3, Arg_1: min([0, Arg_1]) {O(n)} 5: l3->l3, Arg_2: min([1, Arg_2]) {O(n)} 5: l3->l3, Arg_3: min([0, Arg_3]) {O(n)} `Upper: 0: l0->l1, Arg_0: 0 {O(1)} 0: l0->l1, Arg_1: Arg_1 {O(n)} 0: l0->l1, Arg_2: Arg_2 {O(n)} 0: l0->l1, Arg_3: Arg_3 {O(n)} 1: l1->l2, Arg_0: max([0, (max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])+max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])])+max([0, Arg_1*((max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])+max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]))]) {O(n^5)} 1: l1->l2, Arg_1: Arg_1 {O(n)} 1: l1->l2, Arg_2: 0 {O(1)} 1: l1->l2, Arg_3: 0 {O(1)} 4: l1->l3, Arg_0: max([0, max([0, (max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])+max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])])+max([0, Arg_1*((max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])+max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]))])]) {O(n^5)} 4: l1->l3, Arg_1: 0 {O(1)} 4: l1->l3, Arg_2: max([Arg_2, max([0, Arg_1*Arg_1])+max([0, Arg_1])]) {O(n^2)} 4: l1->l3, Arg_3: max([Arg_3, (max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])+max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])]) {O(n^4)} 2: l2->l2, Arg_0: max([0, (max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])+max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])])+max([0, Arg_1*((max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])+max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]))]) {O(n^5)} 2: l2->l2, Arg_1: Arg_1 {O(n)} 2: l2->l2, Arg_2: max([0, Arg_1*Arg_1])+max([0, Arg_1]) {O(n^2)} 2: l2->l2, Arg_3: (max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])+max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]) {O(n^4)} 3: l2->l1, Arg_0: max([0, (max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])+max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])])+max([0, Arg_1*((max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])+max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]))]) {O(n^5)} 3: l2->l1, Arg_1: Arg_1 {O(n)} 3: l2->l1, Arg_2: max([0, Arg_1*Arg_1])+max([0, Arg_1]) {O(n^2)} 3: l2->l1, Arg_3: (max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])+max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]) {O(n^4)} 5: l3->l3, Arg_0: max([0, max([0, (max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])+max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])])+max([0, Arg_1*((max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])+max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])]))])]) {O(n^5)} 5: l3->l3, Arg_1: 0 {O(1)} 5: l3->l3, Arg_2: max([Arg_2, max([0, Arg_1*Arg_1])+max([0, Arg_1])]) {O(n^2)} 5: l3->l3, Arg_3: max([Arg_3, (max([0, Arg_1*Arg_1])+max([0, Arg_1]))*max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])+max([0, max([0, Arg_1*Arg_1])+max([0, Arg_1])])]) {O(n^4)} ---------------------------------------- (2) BOUNDS(1, nat(Arg_1^2) + nat(max(Arg_1 * (nat(Arg_1^2) * nat(nat(Arg_1^2) + nat(Arg_1)) + nat(Arg_1) * nat(nat(Arg_1^2) + nat(Arg_1))) + Arg_1 * nat(nat(Arg_1^2) + nat(Arg_1)), Arg_1 * nat(nat(Arg_1^2) + nat(Arg_1)) + Arg_1 * (-1 * min(-1 * Arg_1^2, 0) * nat(nat(Arg_1^2) + nat(Arg_1)) + nat(Arg_1) * nat(nat(Arg_1^2) + nat(Arg_1))), 0) + nat(nat(nat(Arg_1^2) + nat(Arg_1)) + nat(Arg_1^2) * nat(nat(Arg_1^2) + nat(Arg_1)) + nat(Arg_1) * nat(nat(Arg_1^2) + nat(Arg_1)))) + max(2, 3 + 2 * Arg_1) + nat(2 * Arg_1)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: l0 0: l0 -> l1 : A'=0, [], cost: 1 1: l1 -> l2 : C'=0, D'=0, [ B>=1 ], cost: 1 4: l1 -> l3 : [ 0>=B ], cost: 1 2: l2 -> l2 : C'=1+C, D'=C+D, [ B>=1+C ], cost: 1 3: l2 -> l1 : A'=D+A, B'=-1+B, [ C>=B ], cost: 1 5: l3 -> l3 : A'=-1+A, [ A>=1 ], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 2. Accelerating the following rules: 2: l2 -> l2 : C'=1+C, D'=C+D, [ B>=1+C ], cost: 1 Accelerated rule 2 with metering function -C+B, yielding the new rule 6. Removing the simple loops: 2. Accelerating simple loops of location 3. Accelerating the following rules: 5: l3 -> l3 : A'=-1+A, [ A>=1 ], cost: 1 Accelerated rule 5 with metering function A, yielding the new rule 7. Removing the simple loops: 5. Accelerated all simple loops using metering functions (where possible): Start location: l0 0: l0 -> l1 : A'=0, [], cost: 1 1: l1 -> l2 : C'=0, D'=0, [ B>=1 ], cost: 1 4: l1 -> l3 : [ 0>=B ], cost: 1 3: l2 -> l1 : A'=D+A, B'=-1+B, [ C>=B ], cost: 1 6: l2 -> l2 : C'=B, D'=-1-1/2*C-C*(C-B)+1/2*(C-B)^2+D+1/2*B, [ B>=1+C ], cost: -C+B 7: l3 -> l3 : A'=0, [ A>=1 ], cost: A Chained accelerated rules (with incoming rules): Start location: l0 0: l0 -> l1 : A'=0, [], cost: 1 1: l1 -> l2 : C'=0, D'=0, [ B>=1 ], cost: 1 4: l1 -> l3 : [ 0>=B ], cost: 1 8: l1 -> l2 : C'=B, D'=-1+1/2*B^2+1/2*B, [ B>=1 ], cost: 1+B 9: l1 -> l3 : A'=0, [ 0>=B && A>=1 ], cost: 1+A 3: l2 -> l1 : A'=D+A, B'=-1+B, [ C>=B ], cost: 1 Removed unreachable locations (and leaf rules with constant cost): Start location: l0 0: l0 -> l1 : A'=0, [], cost: 1 1: l1 -> l2 : C'=0, D'=0, [ B>=1 ], cost: 1 8: l1 -> l2 : C'=B, D'=-1+1/2*B^2+1/2*B, [ B>=1 ], cost: 1+B 9: l1 -> l3 : A'=0, [ 0>=B && A>=1 ], cost: 1+A 3: l2 -> l1 : A'=D+A, B'=-1+B, [ C>=B ], cost: 1 Eliminated locations (on tree-shaped paths): Start location: l0 0: l0 -> l1 : A'=0, [], cost: 1 9: l1 -> l3 : A'=0, [ 0>=B && A>=1 ], cost: 1+A 10: l1 -> l1 : A'=-1+1/2*B^2+A+1/2*B, B'=-1+B, C'=B, D'=-1+1/2*B^2+1/2*B, [ B>=1 ], cost: 2+B Accelerating simple loops of location 1. Accelerating the following rules: 10: l1 -> l1 : A'=-1+1/2*B^2+A+1/2*B, B'=-1+B, C'=B, D'=-1+1/2*B^2+1/2*B, [ B>=1 ], cost: 2+B Accelerated rule 10 with metering function B, yielding the new rule 11. Removing the simple loops: 10. Accelerated all simple loops using metering functions (where possible): Start location: l0 0: l0 -> l1 : A'=0, [], cost: 1 9: l1 -> l3 : A'=0, [ 0>=B && A>=1 ], cost: 1+A 11: l1 -> l1 : A'=1+1/6*B^3+A-7/6*B, B'=0, C'=1, D'=0, [ B>=1 ], cost: 1/2*B^2+5/2*B Chained accelerated rules (with incoming rules): Start location: l0 0: l0 -> l1 : A'=0, [], cost: 1 12: l0 -> l1 : A'=1+1/6*B^3-7/6*B, B'=0, C'=1, D'=0, [ B>=1 ], cost: 1+1/2*B^2+5/2*B 9: l1 -> l3 : A'=0, [ 0>=B && A>=1 ], cost: 1+A Eliminated locations (on tree-shaped paths): Start location: l0 13: l0 -> l3 : A'=0, B'=0, C'=1, D'=0, [ B>=1 && 1+1/6*B^3-7/6*B>=1 ], cost: 3+1/6*B^3+1/2*B^2+4/3*B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: l0 13: l0 -> l3 : A'=0, B'=0, C'=1, D'=0, [ B>=1 && 1+1/6*B^3-7/6*B>=1 ], cost: 3+1/6*B^3+1/2*B^2+4/3*B Computing asymptotic complexity for rule 13 Solved the limit problem by the following transformations: Created initial limit problem: 1+1/6*B^3-7/6*B (+/+!), 3+1/6*B^3+1/2*B^2+4/3*B (+), B (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {B==n} resulting limit problem: [solved] Solution: B / n Resulting cost 3+4/3*n+1/6*n^3+1/2*n^2 has complexity: Poly(n^3) Found new complexity Poly(n^3). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^3) Cpx degree: 3 Solved cost: 3+4/3*n+1/6*n^3+1/2*n^2 Rule cost: 3+1/6*B^3+1/2*B^2+4/3*B Rule guard: [ B>=1 && 1+1/6*B^3-7/6*B>=1 ] WORST_CASE(Omega(n^3),?) ---------------------------------------- (4) BOUNDS(n^3, INF)