/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(1, 1 + Arg_1) + nat(Arg_0)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 138 ms] (2) BOUNDS(1, max(1, 1 + Arg_1) + nat(Arg_0)) (3) Loat Proof [FINISHED, 326 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: merge(A, B) -> Com_1(merge(A - 1, B)) :|: A >= 1 && B >= 1 merge(A, B) -> Com_1(merge(A, B - 1)) :|: A >= 1 && B >= 1 start(A, B) -> Com_1(merge(A, B)) :|: TRUE The start-symbols are:[start_2] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, 1+max([0, Arg_1])+max([0, Arg_0]) {O(n)}) Initial Complexity Problem: Start: start Program_Vars: Arg_0, Arg_1 Temp_Vars: Locations: merge, start Transitions: merge(Arg_0,Arg_1) -> merge(Arg_0-1,Arg_1):|:1 <= Arg_0 && 1 <= Arg_1 merge(Arg_0,Arg_1) -> merge(Arg_0,Arg_1-1):|:1 <= Arg_0 && 1 <= Arg_1 start(Arg_0,Arg_1) -> merge(Arg_0,Arg_1):|: Timebounds: Overall timebound: 1+max([0, Arg_1])+max([0, Arg_0]) {O(n)} 0: merge->merge: max([0, Arg_0]) {O(n)} 1: merge->merge: max([0, Arg_1]) {O(n)} 2: start->merge: 1 {O(1)} Costbounds: Overall costbound: 1+max([0, Arg_1])+max([0, Arg_0]) {O(n)} 0: merge->merge: max([0, Arg_0]) {O(n)} 1: merge->merge: max([0, Arg_1]) {O(n)} 2: start->merge: 1 {O(1)} Sizebounds: `Lower: 0: merge->merge, Arg_0: 0 {O(1)} 0: merge->merge, Arg_1: 1 {O(1)} 1: merge->merge, Arg_0: 1 {O(1)} 1: merge->merge, Arg_1: 0 {O(1)} 2: start->merge, Arg_0: Arg_0 {O(n)} 2: start->merge, Arg_1: Arg_1 {O(n)} `Upper: 0: merge->merge, Arg_0: Arg_0 {O(n)} 0: merge->merge, Arg_1: Arg_1 {O(n)} 1: merge->merge, Arg_0: Arg_0 {O(n)} 1: merge->merge, Arg_1: Arg_1 {O(n)} 2: start->merge, Arg_0: Arg_0 {O(n)} 2: start->merge, Arg_1: Arg_1 {O(n)} ---------------------------------------- (2) BOUNDS(1, max(1, 1 + Arg_1) + nat(Arg_0)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: start 0: merge -> merge : A'=-1+A, [ A>=1 && B>=1 ], cost: 1 1: merge -> merge : B'=-1+B, [ A>=1 && B>=1 ], cost: 1 2: start -> merge : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 0: merge -> merge : A'=-1+A, [ A>=1 && B>=1 ], cost: 1 1: merge -> merge : B'=-1+B, [ A>=1 && B>=1 ], cost: 1 Accelerated rule 0 with metering function A, yielding the new rule 3. Accelerated rule 1 with metering function B, yielding the new rule 4. Removing the simple loops: 0 1. Accelerated all simple loops using metering functions (where possible): Start location: start 3: merge -> merge : A'=0, [ A>=1 && B>=1 ], cost: A 4: merge -> merge : B'=0, [ A>=1 && B>=1 ], cost: B 2: start -> merge : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start 2: start -> merge : [], cost: 1 5: start -> merge : A'=0, [ A>=1 && B>=1 ], cost: 1+A 6: start -> merge : B'=0, [ A>=1 && B>=1 ], cost: 1+B Removed unreachable locations (and leaf rules with constant cost): Start location: start 5: start -> merge : A'=0, [ A>=1 && B>=1 ], cost: 1+A 6: start -> merge : B'=0, [ A>=1 && B>=1 ], cost: 1+B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: start 5: start -> merge : A'=0, [ A>=1 && B>=1 ], cost: 1+A 6: start -> merge : B'=0, [ A>=1 && B>=1 ], cost: 1+B Computing asymptotic complexity for rule 5 Solved the limit problem by the following transformations: Created initial limit problem: A (+/+!), B (+/+!), 1+A (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==n,B==1} resulting limit problem: [solved] Solution: A / n B / 1 Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1+A Rule guard: [ A>=1 && B>=1 ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)