/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(2, 2 + Arg_1)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 54 ms] (2) BOUNDS(1, max(2, 2 + Arg_1)) (3) Loat Proof [FINISHED, 145 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: l0(A, B) -> Com_1(l1(0, B)) :|: TRUE l1(A, B) -> Com_1(l1(A + 1, B - 1)) :|: B >= 1 l1(A, B) -> Com_1(l2(A, B)) :|: 0 >= B The start-symbols are:[l0_2] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, max([2, 2+Arg_1]) {O(n)}) Initial Complexity Problem: Start: l0 Program_Vars: Arg_0, Arg_1 Temp_Vars: Locations: l0, l1, l2 Transitions: l0(Arg_0,Arg_1) -> l1(0,Arg_1):|: l1(Arg_0,Arg_1) -> l1(Arg_0+1,Arg_1-1):|:0 <= Arg_0 && 1 <= Arg_1 l1(Arg_0,Arg_1) -> l2(Arg_0,Arg_1):|:0 <= Arg_0 && Arg_1 <= 0 Timebounds: Overall timebound: max([2, 2+Arg_1]) {O(n)} 0: l0->l1: 1 {O(1)} 1: l1->l1: max([0, Arg_1]) {O(n)} 2: l1->l2: 1 {O(1)} Costbounds: Overall costbound: max([2, 2+Arg_1]) {O(n)} 0: l0->l1: 1 {O(1)} 1: l1->l1: max([0, Arg_1]) {O(n)} 2: l1->l2: 1 {O(1)} Sizebounds: `Lower: 0: l0->l1, Arg_0: 0 {O(1)} 0: l0->l1, Arg_1: Arg_1 {O(n)} 1: l1->l1, Arg_0: 1 {O(1)} 1: l1->l1, Arg_1: 0 {O(1)} 2: l1->l2, Arg_0: 0 {O(1)} 2: l1->l2, Arg_1: min([0, Arg_1]) {O(n)} `Upper: 0: l0->l1, Arg_0: 0 {O(1)} 0: l0->l1, Arg_1: Arg_1 {O(n)} 1: l1->l1, Arg_0: max([0, Arg_1]) {O(n)} 1: l1->l1, Arg_1: Arg_1 {O(n)} 2: l1->l2, Arg_0: max([0, Arg_1]) {O(n)} 2: l1->l2, Arg_1: 0 {O(1)} ---------------------------------------- (2) BOUNDS(1, max(2, 2 + Arg_1)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: l0 0: l0 -> l1 : A'=0, [], cost: 1 1: l1 -> l1 : A'=1+A, B'=-1+B, [ B>=1 ], cost: 1 2: l1 -> l2 : [ 0>=B ], cost: 1 Removed unreachable and leaf rules: Start location: l0 0: l0 -> l1 : A'=0, [], cost: 1 1: l1 -> l1 : A'=1+A, B'=-1+B, [ B>=1 ], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: l1 -> l1 : A'=1+A, B'=-1+B, [ B>=1 ], cost: 1 Accelerated rule 1 with metering function B, yielding the new rule 3. Removing the simple loops: 1. Accelerated all simple loops using metering functions (where possible): Start location: l0 0: l0 -> l1 : A'=0, [], cost: 1 3: l1 -> l1 : A'=A+B, B'=0, [ B>=1 ], cost: B Chained accelerated rules (with incoming rules): Start location: l0 0: l0 -> l1 : A'=0, [], cost: 1 4: l0 -> l1 : A'=B, B'=0, [ B>=1 ], cost: 1+B Removed unreachable locations (and leaf rules with constant cost): Start location: l0 4: l0 -> l1 : A'=B, B'=0, [ B>=1 ], cost: 1+B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: l0 4: l0 -> l1 : A'=B, B'=0, [ B>=1 ], cost: 1+B Computing asymptotic complexity for rule 4 Solved the limit problem by the following transformations: Created initial limit problem: 1+B (+), B (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {B==n} resulting limit problem: [solved] Solution: B / n Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1+B Rule guard: [ B>=1 ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)