/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(3 + -1 * Arg_0 + Arg_1, 2)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 145 ms] (2) BOUNDS(1, max(3 + -1 * Arg_0 + Arg_1, 2)) (3) Loat Proof [FINISHED, 125 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: sumto(A, B) -> Com_1(end(A, B)) :|: A >= B + 1 sumto(A, B) -> Com_1(sumto(A + 1, B)) :|: B >= A start(A, B) -> Com_1(sumto(A, B)) :|: TRUE The start-symbols are:[start_2] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, max([2, 3+Arg_1-Arg_0]) {O(n)}) Initial Complexity Problem: Start: start Program_Vars: Arg_0, Arg_1 Temp_Vars: Locations: end, start, sumto Transitions: start(Arg_0,Arg_1) -> sumto(Arg_0,Arg_1):|: sumto(Arg_0,Arg_1) -> end(Arg_0,Arg_1):|:Arg_1+1 <= Arg_0 sumto(Arg_0,Arg_1) -> sumto(Arg_0+1,Arg_1):|:Arg_0 <= Arg_1 Timebounds: Overall timebound: max([2, 3+Arg_1-Arg_0]) {O(n)} 2: start->sumto: 1 {O(1)} 0: sumto->end: 1 {O(1)} 1: sumto->sumto: max([0, 1+Arg_1-Arg_0]) {O(n)} Costbounds: Overall costbound: max([2, 3+Arg_1-Arg_0]) {O(n)} 2: start->sumto: 1 {O(1)} 0: sumto->end: 1 {O(1)} 1: sumto->sumto: max([0, 1+Arg_1-Arg_0]) {O(n)} Sizebounds: `Lower: 2: start->sumto, Arg_0: Arg_0 {O(n)} 2: start->sumto, Arg_1: Arg_1 {O(n)} 0: sumto->end, Arg_0: Arg_0 {O(n)} 0: sumto->end, Arg_1: Arg_1 {O(n)} 1: sumto->sumto, Arg_0: Arg_0 {O(n)} 1: sumto->sumto, Arg_1: Arg_1 {O(n)} `Upper: 2: start->sumto, Arg_0: Arg_0 {O(n)} 2: start->sumto, Arg_1: Arg_1 {O(n)} 0: sumto->end, Arg_0: max([Arg_0, Arg_0+max([0, 1+Arg_1-Arg_0])]) {O(n)} 0: sumto->end, Arg_1: Arg_1 {O(n)} 1: sumto->sumto, Arg_0: Arg_0+max([0, 1+Arg_1-Arg_0]) {O(n)} 1: sumto->sumto, Arg_1: Arg_1 {O(n)} ---------------------------------------- (2) BOUNDS(1, max(3 + -1 * Arg_0 + Arg_1, 2)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: start 0: sumto -> end : [ A>=1+B ], cost: 1 1: sumto -> sumto : A'=1+A, [ B>=A ], cost: 1 2: start -> sumto : [], cost: 1 Removed unreachable and leaf rules: Start location: start 1: sumto -> sumto : A'=1+A, [ B>=A ], cost: 1 2: start -> sumto : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 1: sumto -> sumto : A'=1+A, [ B>=A ], cost: 1 Accelerated rule 1 with metering function 1-A+B, yielding the new rule 3. Removing the simple loops: 1. Accelerated all simple loops using metering functions (where possible): Start location: start 3: sumto -> sumto : A'=1+B, [ B>=A ], cost: 1-A+B 2: start -> sumto : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start 2: start -> sumto : [], cost: 1 4: start -> sumto : A'=1+B, [ B>=A ], cost: 2-A+B Removed unreachable locations (and leaf rules with constant cost): Start location: start 4: start -> sumto : A'=1+B, [ B>=A ], cost: 2-A+B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: start 4: start -> sumto : A'=1+B, [ B>=A ], cost: 2-A+B Computing asymptotic complexity for rule 4 Solved the limit problem by the following transformations: Created initial limit problem: 1-A+B (+/+!), 2-A+B (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==0,B==n} resulting limit problem: [solved] Solution: A / 0 B / n Resulting cost 2+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 2+n Rule cost: 2-A+B Rule guard: [ B>=A ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)