/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(1, 1 + 2 * Arg_0) + nat(Arg_0) + nat(2 * Arg_1)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 273 ms] (2) BOUNDS(1, max(1, 1 + 2 * Arg_0) + nat(Arg_0) + nat(2 * Arg_1)) (3) Loat Proof [FINISHED, 1022 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval(A, B) -> Com_1(eval(A - 1, B)) :|: A + B >= 1 && A >= B + 1 eval(A, B) -> Com_1(eval(A - 1, B)) :|: 2 * A >= 1 && B >= A && B <= A eval(A, B) -> Com_1(eval(A, B - 1)) :|: A + B >= 1 && B >= A && B >= A + 1 eval(A, B) -> Com_1(eval(A, B - 1)) :|: A + B >= 1 && B >= A && A >= B + 1 start(A, B) -> Com_1(eval(A, B)) :|: TRUE The start-symbols are:[start_2] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, 1+max([0, 2*Arg_0])+max([0, Arg_0])+max([0, 2*Arg_1]) {O(n)}) Initial Complexity Problem: Start: start Program_Vars: Arg_0, Arg_1 Temp_Vars: Locations: eval, start Transitions: eval(Arg_0,Arg_1) -> eval(Arg_0-1,Arg_1):|:1 <= Arg_0+Arg_1 && Arg_1+1 <= Arg_0 eval(Arg_0,Arg_1) -> eval(Arg_0-1,Arg_1):|:1 <= (2)*Arg_0 && Arg_1 <= Arg_0 && Arg_0 <= Arg_1 eval(Arg_0,Arg_1) -> eval(Arg_0,Arg_1-1):|:1 <= Arg_0+Arg_1 && Arg_0 <= Arg_1 && Arg_0+1 <= Arg_1 start(Arg_0,Arg_1) -> eval(Arg_0,Arg_1):|: Timebounds: Overall timebound: 1+max([0, 2*Arg_0])+max([0, Arg_0])+max([0, 2*Arg_1]) {O(n)} 0: eval->eval: max([0, Arg_0]) {O(n)} 1: eval->eval: max([0, 2*Arg_0]) {O(n)} 2: eval->eval: max([0, 2*Arg_1]) {O(n)} 4: start->eval: 1 {O(1)} Costbounds: Overall costbound: 1+max([0, 2*Arg_0])+max([0, Arg_0])+max([0, 2*Arg_1]) {O(n)} 0: eval->eval: max([0, Arg_0]) {O(n)} 1: eval->eval: max([0, 2*Arg_0]) {O(n)} 2: eval->eval: max([0, 2*Arg_1]) {O(n)} 4: start->eval: 1 {O(1)} Sizebounds: `Lower: 0: eval->eval, Arg_0: 0 {O(1)} 0: eval->eval, Arg_1: Arg_1 {O(n)} 1: eval->eval, Arg_0: 0 {O(1)} 1: eval->eval, Arg_1: 1 {O(1)} 2: eval->eval, Arg_0: min([0, Arg_0]) {O(n)} 2: eval->eval, Arg_1: 0 {O(1)} 4: start->eval, Arg_0: Arg_0 {O(n)} 4: start->eval, Arg_1: Arg_1 {O(n)} `Upper: 0: eval->eval, Arg_0: Arg_0 {O(n)} 0: eval->eval, Arg_1: Arg_1 {O(n)} 1: eval->eval, Arg_0: Arg_0 {O(n)} 1: eval->eval, Arg_1: Arg_1 {O(n)} 2: eval->eval, Arg_0: Arg_0 {O(n)} 2: eval->eval, Arg_1: Arg_1 {O(n)} 4: start->eval, Arg_0: Arg_0 {O(n)} 4: start->eval, Arg_1: Arg_1 {O(n)} ---------------------------------------- (2) BOUNDS(1, max(1, 1 + 2 * Arg_0) + nat(Arg_0) + nat(2 * Arg_1)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: start 0: eval -> eval : A'=-1+A, [ A+B>=1 && A>=1+B ], cost: 1 1: eval -> eval : A'=-1+A, [ 2*A>=1 && B==A ], cost: 1 2: eval -> eval : B'=-1+B, [ A+B>=1 && B>=A && B>=1+A ], cost: 1 3: eval -> eval : B'=-1+B, [ A+B>=1 && B>=A && A>=1+B ], cost: 1 4: start -> eval : [], cost: 1 Removed rules with unsatisfiable guard: Start location: start 0: eval -> eval : A'=-1+A, [ A+B>=1 && A>=1+B ], cost: 1 1: eval -> eval : A'=-1+A, [ 2*A>=1 && B==A ], cost: 1 2: eval -> eval : B'=-1+B, [ A+B>=1 && B>=A && B>=1+A ], cost: 1 4: start -> eval : [], cost: 1 Simplified all rules, resulting in: Start location: start 0: eval -> eval : A'=-1+A, [ A+B>=1 && A>=1+B ], cost: 1 1: eval -> eval : A'=-1+A, [ 2*A>=1 && B==A ], cost: 1 2: eval -> eval : B'=-1+B, [ A+B>=1 && B>=1+A ], cost: 1 4: start -> eval : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 0: eval -> eval : A'=-1+A, [ A+B>=1 && A>=1+B ], cost: 1 1: eval -> eval : A'=-1+A, [ 2*A>=1 && B==A ], cost: 1 2: eval -> eval : B'=-1+B, [ A+B>=1 && B>=1+A ], cost: 1 Accelerated rule 0 with backward acceleration, yielding the new rule 5. Accelerated rule 0 with backward acceleration, yielding the new rule 6. Accelerated rule 1 with metering function A-B, yielding the new rule 7. Accelerated rule 2 with backward acceleration, yielding the new rule 8. Accelerated rule 2 with backward acceleration, yielding the new rule 9. Removing the simple loops: 0 1 2. Accelerated all simple loops using metering functions (where possible): Start location: start 5: eval -> eval : A'=-B, [ A+B>=1 && A>=1+B && 1-B>=1+B ], cost: A+B 6: eval -> eval : A'=B, [ A+B>=1 && A>=1+B && 1+2*B>=1 ], cost: A-B 7: eval -> eval : A'=B, [ 2*A>=1 && B==A && A-B>=1 ], cost: A-B 8: eval -> eval : B'=-A, [ A+B>=1 && B>=1+A && 1-A>=1+A ], cost: A+B 9: eval -> eval : B'=A, [ A+B>=1 && B>=1+A && 1+2*A>=1 ], cost: -A+B 4: start -> eval : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start 4: start -> eval : [], cost: 1 10: start -> eval : A'=-B, [ A+B>=1 && A>=1+B && 1-B>=1+B ], cost: 1+A+B 11: start -> eval : A'=B, [ A+B>=1 && A>=1+B && 1+2*B>=1 ], cost: 1+A-B 12: start -> eval : B'=-A, [ A+B>=1 && B>=1+A && 1-A>=1+A ], cost: 1+A+B 13: start -> eval : B'=A, [ A+B>=1 && B>=1+A && 1+2*A>=1 ], cost: 1-A+B Removed unreachable locations (and leaf rules with constant cost): Start location: start 10: start -> eval : A'=-B, [ A+B>=1 && A>=1+B && 1-B>=1+B ], cost: 1+A+B 11: start -> eval : A'=B, [ A+B>=1 && A>=1+B && 1+2*B>=1 ], cost: 1+A-B 12: start -> eval : B'=-A, [ A+B>=1 && B>=1+A && 1-A>=1+A ], cost: 1+A+B 13: start -> eval : B'=A, [ A+B>=1 && B>=1+A && 1+2*A>=1 ], cost: 1-A+B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: start 10: start -> eval : A'=-B, [ A+B>=1 && A>=1+B && 1-B>=1+B ], cost: 1+A+B 11: start -> eval : A'=B, [ A+B>=1 && A>=1+B && 1+2*B>=1 ], cost: 1+A-B 12: start -> eval : B'=-A, [ A+B>=1 && B>=1+A && 1-A>=1+A ], cost: 1+A+B 13: start -> eval : B'=A, [ A+B>=1 && B>=1+A && 1+2*A>=1 ], cost: 1-A+B Computing asymptotic complexity for rule 10 Solved the limit problem by the following transformations: Created initial limit problem: 1+A+B (+), A+B (+/+!), 1-2*B (+/+!), A-B (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==2*n,B==-n} resulting limit problem: [solved] Solution: A / 2*n B / -n Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1+A+B Rule guard: [ A+B>=1 && A>=1+B && 1-B>=1+B ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)