/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, max(3, 3 + 4 * Arg_0) + nat(8 * Arg_0)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 154 ms] (2) BOUNDS(1, max(3, 3 + 4 * Arg_0) + nat(8 * Arg_0)) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: start(A) -> Com_1(a(A)) :|: A >= 1 start(A) -> Com_1(a(A)) :|: A >= 2 start(A) -> Com_1(a(A)) :|: A >= 4 a(A) -> Com_1(a(B)) :|: 2 * B >= 2 && A >= 2 * B && A <= 2 * B a(A) -> Com_1(a(B)) :|: 2 * B >= 1 && A >= 2 * B + 1 && A <= 2 * B + 1 The start-symbols are:[start_1] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, 3+2*(2*max([0, Arg_0])+max([0, Arg_0])+max([0, Arg_0])+max([0, Arg_0])+max([0, Arg_0])) {O(n)}) Initial Complexity Problem: Start: start Program_Vars: Arg_0 Temp_Vars: B Locations: a, start Transitions: a(Arg_0) -> a(B):|:2 <= (2)*B && Arg_0 <= (2)*B && (2)*B <= Arg_0 a(Arg_0) -> a(B):|:1 <= (2)*B && Arg_0 <= (2)*B+1 && (2)*B+1 <= Arg_0 start(Arg_0) -> a(Arg_0):|:1 <= Arg_0 start(Arg_0) -> a(Arg_0):|:2 <= Arg_0 start(Arg_0) -> a(Arg_0):|:4 <= Arg_0 Timebounds: Overall timebound: 3+2*(2*max([0, Arg_0])+max([0, Arg_0])+max([0, Arg_0])+max([0, Arg_0])+max([0, Arg_0])) {O(n)} 3: a->a: 2*max([0, Arg_0])+max([0, Arg_0])+max([0, Arg_0])+max([0, Arg_0])+max([0, Arg_0]) {O(n)} 4: a->a: 2*max([0, Arg_0])+max([0, Arg_0])+max([0, Arg_0])+max([0, Arg_0])+max([0, Arg_0]) {O(n)} 0: start->a: 1 {O(1)} 1: start->a: 1 {O(1)} 2: start->a: 1 {O(1)} Costbounds: Overall costbound: 3+2*(2*max([0, Arg_0])+max([0, Arg_0])+max([0, Arg_0])+max([0, Arg_0])+max([0, Arg_0])) {O(n)} 3: a->a: 2*max([0, Arg_0])+max([0, Arg_0])+max([0, Arg_0])+max([0, Arg_0])+max([0, Arg_0]) {O(n)} 4: a->a: 2*max([0, Arg_0])+max([0, Arg_0])+max([0, Arg_0])+max([0, Arg_0])+max([0, Arg_0]) {O(n)} 0: start->a: 1 {O(1)} 1: start->a: 1 {O(1)} 2: start->a: 1 {O(1)} Sizebounds: `Lower: 3: a->a, Arg_0: 1 {O(1)} 4: a->a, Arg_0: 1 {O(1)} 0: start->a, Arg_0: 1 {O(1)} 1: start->a, Arg_0: 2 {O(1)} 2: start->a, Arg_0: 4 {O(1)} `Upper: 0: start->a, Arg_0: Arg_0 {O(n)} 1: start->a, Arg_0: Arg_0 {O(n)} 2: start->a, Arg_0: Arg_0 {O(n)} ---------------------------------------- (2) BOUNDS(1, max(3, 3 + 4 * Arg_0) + nat(8 * Arg_0))