/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(1, 1 + Arg_0 + -1 * Arg_1)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 43 ms] (2) BOUNDS(1, max(1, 1 + Arg_0 + -1 * Arg_1)) (3) Loat Proof [FINISHED, 130 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval(A, B) -> Com_1(eval(A - 1, B + 1)) :|: A >= B + 1 start(A, B) -> Com_1(eval(A, B)) :|: TRUE The start-symbols are:[start_2] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, max([1, 1+Arg_0-Arg_1]) {O(n)}) Initial Complexity Problem: Start: start Program_Vars: Arg_0, Arg_1 Temp_Vars: Locations: eval, start Transitions: eval(Arg_0,Arg_1) -> eval(Arg_0-1,Arg_1+1):|:Arg_1+1 <= Arg_0 start(Arg_0,Arg_1) -> eval(Arg_0,Arg_1):|: Timebounds: Overall timebound: max([1, 1+Arg_0-Arg_1]) {O(n)} 0: eval->eval: max([0, Arg_0-Arg_1]) {O(n)} 1: start->eval: 1 {O(1)} Costbounds: Overall costbound: max([1, 1+Arg_0-Arg_1]) {O(n)} 0: eval->eval: max([0, Arg_0-Arg_1]) {O(n)} 1: start->eval: 1 {O(1)} Sizebounds: `Lower: 0: eval->eval, Arg_0: Arg_0-max([0, Arg_0-Arg_1]) {O(n)} 0: eval->eval, Arg_1: Arg_1 {O(n)} 1: start->eval, Arg_0: Arg_0 {O(n)} 1: start->eval, Arg_1: Arg_1 {O(n)} `Upper: 0: eval->eval, Arg_0: Arg_0 {O(n)} 0: eval->eval, Arg_1: Arg_1+max([0, Arg_0-Arg_1]) {O(n)} 1: start->eval, Arg_0: Arg_0 {O(n)} 1: start->eval, Arg_1: Arg_1 {O(n)} ---------------------------------------- (2) BOUNDS(1, max(1, 1 + Arg_0 + -1 * Arg_1)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: start 0: eval -> eval : A'=-1+A, B'=1+B, [ A>=1+B ], cost: 1 1: start -> eval : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 0: eval -> eval : A'=-1+A, B'=1+B, [ A>=1+B ], cost: 1 Accelerated rule 0 with metering function meter (where 2*meter==A-B), yielding the new rule 2. Removing the simple loops: 0. Accelerated all simple loops using metering functions (where possible): Start location: start 2: eval -> eval : A'=A-meter, B'=meter+B, [ A>=1+B && 2*meter==A-B && meter>=1 ], cost: meter 1: start -> eval : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start 1: start -> eval : [], cost: 1 3: start -> eval : A'=A-meter, B'=meter+B, [ A>=1+B && 2*meter==A-B && meter>=1 ], cost: 1+meter Removed unreachable locations (and leaf rules with constant cost): Start location: start 3: start -> eval : A'=A-meter, B'=meter+B, [ A>=1+B && 2*meter==A-B && meter>=1 ], cost: 1+meter ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: start 3: start -> eval : A'=A-meter, B'=meter+B, [ A>=1+B && 2*meter==A-B && meter>=1 ], cost: 1+meter Computing asymptotic complexity for rule 3 Solved the limit problem by the following transformations: Created initial limit problem: 1-A+2*meter+B (+/+!), 1+A-2*meter-B (+/+!), 1+meter (+), A-B (+/+!) [not solved] applying transformation rule (C) using substitution {A==2*meter+B} resulting limit problem: 1 (+/+!), 1+meter (+), 2*meter (+/+!) [not solved] applying transformation rule (B), deleting 1 (+/+!) resulting limit problem: 1+meter (+), 2*meter (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {meter==n} resulting limit problem: [solved] Solved the limit problem by the following transformations: Created initial limit problem: 1-A+2*meter+B (+/+!), 1+A-2*meter-B (+/+!), 1+meter (+), A-B (+/+!) [not solved] applying transformation rule (C) using substitution {A==2*meter+B} resulting limit problem: 1 (+/+!), 1+meter (+), 2*meter (+/+!) [not solved] applying transformation rule (B), deleting 1 (+/+!) resulting limit problem: 1+meter (+), 2*meter (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {meter==n} resulting limit problem: [solved] Solution: A / 2*n meter / n B / 0 Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1+meter Rule guard: [ A>=1+B && 2*meter==A-B ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)