/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(INF, INF). (0) CpxIntTrs (1) Loat Proof [FINISHED, 1207 ms] (2) BOUNDS(INF, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f2(A, B, C, D) -> Com_1(f1(A, B, C, D)) :|: TRUE f1(A, B, C, D) -> Com_1(f1(1 + A, B, E, D)) :|: E >= 1 && B >= 1 + A f1(A, B, C, D) -> Com_1(f1(1 + A, B, E, D)) :|: 0 >= E + 1 && B >= 1 + A f1(A, B, C, D) -> Com_1(f1(A, B, 0, D)) :|: B >= 1 + A f1(A, B, C, D) -> Com_1(f1(1 + A, A, E, D)) :|: E >= 1 && B >= F && A >= B && A <= B f1(A, B, C, D) -> Com_1(f1(1 + A, A, E, D)) :|: 0 >= E + 1 && B >= F && A >= B && A <= B f1(A, B, C, D) -> Com_1(f1(A, A, 0, D)) :|: B >= E && A >= B && A <= B f1(A, B, C, D) -> Com_1(f300(A, B, C, E)) :|: A >= B && A >= B + 1 f1(A, B, C, D) -> Com_1(f300(A, B, C, E)) :|: A >= B && B >= A + 1 The start-symbols are:[f2_4] ---------------------------------------- (1) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f2 0: f2 -> f1 : [], cost: 1 1: f1 -> f1 : B'=1+B, C'=free, [ free>=1 && A>=1+B ], cost: 1 2: f1 -> f1 : B'=1+B, C'=free_1, [ 0>=1+free_1 && A>=1+B ], cost: 1 3: f1 -> f1 : C'=0, [ A>=1+B ], cost: 1 4: f1 -> f1 : A'=B, B'=1+B, C'=free_3, [ free_3>=1 && A>=free_2 && B==A ], cost: 1 5: f1 -> f1 : A'=B, B'=1+B, C'=free_5, [ 0>=1+free_5 && A>=free_4 && B==A ], cost: 1 6: f1 -> f1 : A'=B, C'=0, [ A>=free_6 && B==A ], cost: 1 7: f1 -> f300 : D'=free_7, [ B>=A && B>=1+A ], cost: 1 8: f1 -> f300 : D'=free_8, [ B>=A && A>=1+B ], cost: 1 Removed unreachable and leaf rules: Start location: f2 0: f2 -> f1 : [], cost: 1 1: f1 -> f1 : B'=1+B, C'=free, [ free>=1 && A>=1+B ], cost: 1 2: f1 -> f1 : B'=1+B, C'=free_1, [ 0>=1+free_1 && A>=1+B ], cost: 1 3: f1 -> f1 : C'=0, [ A>=1+B ], cost: 1 4: f1 -> f1 : A'=B, B'=1+B, C'=free_3, [ free_3>=1 && A>=free_2 && B==A ], cost: 1 5: f1 -> f1 : A'=B, B'=1+B, C'=free_5, [ 0>=1+free_5 && A>=free_4 && B==A ], cost: 1 6: f1 -> f1 : A'=B, C'=0, [ A>=free_6 && B==A ], cost: 1 Simplified all rules, resulting in: Start location: f2 0: f2 -> f1 : [], cost: 1 1: f1 -> f1 : B'=1+B, C'=free, [ free>=1 && A>=1+B ], cost: 1 2: f1 -> f1 : B'=1+B, C'=free_1, [ 0>=1+free_1 && A>=1+B ], cost: 1 3: f1 -> f1 : C'=0, [ A>=1+B ], cost: 1 4: f1 -> f1 : A'=B, B'=1+B, C'=free_3, [ free_3>=1 && B==A ], cost: 1 5: f1 -> f1 : A'=B, B'=1+B, C'=free_5, [ 0>=1+free_5 && B==A ], cost: 1 6: f1 -> f1 : A'=B, C'=0, [ B==A ], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: f1 -> f1 : B'=1+B, C'=free, [ free>=1 && A>=1+B ], cost: 1 2: f1 -> f1 : B'=1+B, C'=free_1, [ 0>=1+free_1 && A>=1+B ], cost: 1 3: f1 -> f1 : C'=0, [ A>=1+B ], cost: 1 4: f1 -> f1 : A'=B, B'=1+B, C'=free_3, [ free_3>=1 && B==A ], cost: 1 5: f1 -> f1 : A'=B, B'=1+B, C'=free_5, [ 0>=1+free_5 && B==A ], cost: 1 6: f1 -> f1 : A'=B, C'=0, [ B==A ], cost: 1 Accelerated rule 1 with metering function A-B, yielding the new rule 9. Accelerated rule 2 with metering function A-B, yielding the new rule 10. Accelerated rule 3 with NONTERM, yielding the new rule 11. Accelerated rule 4 with metering function 1+A-B, yielding the new rule 12. Accelerated rule 5 with metering function 1+A-B, yielding the new rule 13. Accelerated rule 6 with NONTERM, yielding the new rule 14. Removing the simple loops: 1 2 3 4 5 6. Accelerated all simple loops using metering functions (where possible): Start location: f2 0: f2 -> f1 : [], cost: 1 9: f1 -> f1 : B'=A, C'=free, [ free>=1 && A>=1+B ], cost: A-B 10: f1 -> f1 : B'=A, C'=free_1, [ 0>=1+free_1 && A>=1+B ], cost: A-B 11: f1 -> [3] : [ A>=1+B ], cost: INF 12: f1 -> f1 : A'=A, B'=1+A, C'=free_3, [ free_3>=1 && B==A ], cost: 1+A-B 13: f1 -> f1 : A'=A, B'=1+A, C'=free_5, [ 0>=1+free_5 && B==A ], cost: 1+A-B 14: f1 -> [3] : [ B==A ], cost: INF Chained accelerated rules (with incoming rules): Start location: f2 0: f2 -> f1 : [], cost: 1 15: f2 -> f1 : B'=A, C'=free, [ free>=1 && A>=1+B ], cost: 1+A-B 16: f2 -> f1 : B'=A, C'=free_1, [ 0>=1+free_1 && A>=1+B ], cost: 1+A-B 17: f2 -> [3] : [ A>=1+B ], cost: INF 18: f2 -> f1 : B'=1+A, C'=free_3, [ free_3>=1 && B==A ], cost: 2+A-B 19: f2 -> f1 : B'=1+A, C'=free_5, [ 0>=1+free_5 && B==A ], cost: 2+A-B 20: f2 -> [3] : [ B==A ], cost: INF Removed unreachable locations (and leaf rules with constant cost): Start location: f2 15: f2 -> f1 : B'=A, C'=free, [ free>=1 && A>=1+B ], cost: 1+A-B 16: f2 -> f1 : B'=A, C'=free_1, [ 0>=1+free_1 && A>=1+B ], cost: 1+A-B 17: f2 -> [3] : [ A>=1+B ], cost: INF 18: f2 -> f1 : B'=1+A, C'=free_3, [ free_3>=1 && B==A ], cost: 2+A-B 19: f2 -> f1 : B'=1+A, C'=free_5, [ 0>=1+free_5 && B==A ], cost: 2+A-B 20: f2 -> [3] : [ B==A ], cost: INF ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f2 15: f2 -> f1 : B'=A, C'=free, [ free>=1 && A>=1+B ], cost: 1+A-B 16: f2 -> f1 : B'=A, C'=free_1, [ 0>=1+free_1 && A>=1+B ], cost: 1+A-B 17: f2 -> [3] : [ A>=1+B ], cost: INF 18: f2 -> f1 : B'=1+A, C'=free_3, [ free_3>=1 && B==A ], cost: 2+A-B 19: f2 -> f1 : B'=1+A, C'=free_5, [ 0>=1+free_5 && B==A ], cost: 2+A-B 20: f2 -> [3] : [ B==A ], cost: INF Computing asymptotic complexity for rule 15 Solved the limit problem by the following transformations: Created initial limit problem: free (+/+!), 1+A-B (+), A-B (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {free==1,A==0,B==-n} resulting limit problem: [solved] Solution: free / 1 A / 0 B / -n Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Computing asymptotic complexity for rule 17 Resulting cost INF has complexity: Nonterm Found new complexity Nonterm. Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Nonterm Cpx degree: Nonterm Solved cost: INF Rule cost: INF Rule guard: [ A>=1+B ] NO ---------------------------------------- (2) BOUNDS(INF, INF)