/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(1, 1 + 2 * Arg_0) + nat(Arg_1)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 241 ms] (2) BOUNDS(1, max(1, 1 + 2 * Arg_0) + nat(Arg_1)) (3) Loat Proof [FINISHED, 611 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval(A, B) -> Com_1(eval(A - 1, B)) :|: A >= 1 eval(A, B) -> Com_1(eval(A - 1, B)) :|: B >= 1 && A >= 1 eval(A, B) -> Com_1(eval(A, B - 1)) :|: A >= 1 && 0 >= A && B >= 1 eval(A, B) -> Com_1(eval(A, B - 1)) :|: B >= 1 && 0 >= A eval(A, B) -> Com_1(eval(A, B)) :|: A >= 1 && 0 >= A && 0 >= B eval(A, B) -> Com_1(eval(A, B)) :|: B >= 1 && 0 >= A && 0 >= B start(A, B) -> Com_1(eval(A, B)) :|: TRUE The start-symbols are:[start_2] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, 1+2*max([0, Arg_0])+max([0, Arg_1]) {O(n)}) Initial Complexity Problem: Start: start Program_Vars: Arg_0, Arg_1 Temp_Vars: Locations: eval, start Transitions: eval(Arg_0,Arg_1) -> eval(Arg_0-1,Arg_1):|:1 <= Arg_0 eval(Arg_0,Arg_1) -> eval(Arg_0-1,Arg_1):|:1 <= Arg_1 && 1 <= Arg_0 eval(Arg_0,Arg_1) -> eval(Arg_0,Arg_1-1):|:1 <= Arg_1 && Arg_0 <= 0 start(Arg_0,Arg_1) -> eval(Arg_0,Arg_1):|: Timebounds: Overall timebound: 1+2*max([0, Arg_0])+max([0, Arg_1]) {O(n)} 0: eval->eval: max([0, Arg_0]) {O(n)} 1: eval->eval: max([0, Arg_0]) {O(n)} 3: eval->eval: max([0, Arg_1]) {O(n)} 6: start->eval: 1 {O(1)} Costbounds: Overall costbound: 1+2*max([0, Arg_0])+max([0, Arg_1]) {O(n)} 0: eval->eval: max([0, Arg_0]) {O(n)} 1: eval->eval: max([0, Arg_0]) {O(n)} 3: eval->eval: max([0, Arg_1]) {O(n)} 6: start->eval: 1 {O(1)} Sizebounds: `Lower: 0: eval->eval, Arg_0: 0 {O(1)} 0: eval->eval, Arg_1: min([1, Arg_1]) {O(n)} 1: eval->eval, Arg_0: 0 {O(1)} 1: eval->eval, Arg_1: 1 {O(1)} 3: eval->eval, Arg_0: min([0, Arg_0]) {O(n)} 3: eval->eval, Arg_1: 0 {O(1)} 6: start->eval, Arg_0: Arg_0 {O(n)} 6: start->eval, Arg_1: Arg_1 {O(n)} `Upper: 0: eval->eval, Arg_0: Arg_0 {O(n)} 0: eval->eval, Arg_1: Arg_1 {O(n)} 1: eval->eval, Arg_0: Arg_0 {O(n)} 1: eval->eval, Arg_1: Arg_1 {O(n)} 3: eval->eval, Arg_0: 0 {O(1)} 3: eval->eval, Arg_1: Arg_1 {O(n)} 6: start->eval, Arg_0: Arg_0 {O(n)} 6: start->eval, Arg_1: Arg_1 {O(n)} ---------------------------------------- (2) BOUNDS(1, max(1, 1 + 2 * Arg_0) + nat(Arg_1)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: start 0: eval -> eval : A'=-1+A, [ A>=1 ], cost: 1 1: eval -> eval : A'=-1+A, [ B>=1 && A>=1 ], cost: 1 2: eval -> eval : B'=-1+B, [ A>=1 && 0>=A && B>=1 ], cost: 1 3: eval -> eval : B'=-1+B, [ B>=1 && 0>=A ], cost: 1 4: eval -> eval : [ A>=1 && 0>=A && 0>=B ], cost: 1 5: eval -> eval : [ B>=1 && 0>=A && 0>=B ], cost: 1 6: start -> eval : [], cost: 1 Removed rules with unsatisfiable guard: Start location: start 0: eval -> eval : A'=-1+A, [ A>=1 ], cost: 1 1: eval -> eval : A'=-1+A, [ B>=1 && A>=1 ], cost: 1 3: eval -> eval : B'=-1+B, [ B>=1 && 0>=A ], cost: 1 6: start -> eval : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 0: eval -> eval : A'=-1+A, [ A>=1 ], cost: 1 1: eval -> eval : A'=-1+A, [ B>=1 && A>=1 ], cost: 1 3: eval -> eval : B'=-1+B, [ B>=1 && 0>=A ], cost: 1 Accelerated rule 0 with metering function A, yielding the new rule 7. Accelerated rule 1 with metering function A, yielding the new rule 8. Accelerated rule 3 with metering function B, yielding the new rule 9. Removing the simple loops: 0 1 3. Accelerated all simple loops using metering functions (where possible): Start location: start 7: eval -> eval : A'=0, [ A>=1 ], cost: A 8: eval -> eval : A'=0, [ B>=1 && A>=1 ], cost: A 9: eval -> eval : B'=0, [ B>=1 && 0>=A ], cost: B 6: start -> eval : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start 6: start -> eval : [], cost: 1 10: start -> eval : A'=0, [ A>=1 ], cost: 1+A 11: start -> eval : A'=0, [ B>=1 && A>=1 ], cost: 1+A 12: start -> eval : B'=0, [ B>=1 && 0>=A ], cost: 1+B Removed unreachable locations (and leaf rules with constant cost): Start location: start 10: start -> eval : A'=0, [ A>=1 ], cost: 1+A 11: start -> eval : A'=0, [ B>=1 && A>=1 ], cost: 1+A 12: start -> eval : B'=0, [ B>=1 && 0>=A ], cost: 1+B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: start 10: start -> eval : A'=0, [ A>=1 ], cost: 1+A 11: start -> eval : A'=0, [ B>=1 && A>=1 ], cost: 1+A 12: start -> eval : B'=0, [ B>=1 && 0>=A ], cost: 1+B Computing asymptotic complexity for rule 10 Solved the limit problem by the following transformations: Created initial limit problem: A (+/+!), 1+A (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==n} resulting limit problem: [solved] Solution: A / n Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1+A Rule guard: [ A>=1 ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)