/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(2, 2 + Arg_0)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 38 ms] (2) BOUNDS(1, max(2, 2 + Arg_0)) (3) Loat Proof [FINISHED, 145 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f2(A, B) -> Com_1(f3(A, 1)) :|: 0 >= A f0(A, B) -> Com_1(f2(A, 0)) :|: TRUE f2(A, B) -> Com_1(f2(A - 1, B)) :|: A >= 1 The start-symbols are:[f0_2] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, max([2, 2+Arg_0]) {O(n)}) Initial Complexity Problem: Start: f0 Program_Vars: Arg_0, Arg_1 Temp_Vars: Locations: f0, f2, f3 Transitions: f0(Arg_0,Arg_1) -> f2(Arg_0,0):|: f2(Arg_0,Arg_1) -> f2(Arg_0-1,Arg_1):|:Arg_1 <= 0 && 0 <= Arg_1 && 1 <= Arg_0 f2(Arg_0,Arg_1) -> f3(Arg_0,1):|:Arg_1 <= 0 && 0 <= Arg_1 && Arg_0 <= 0 Timebounds: Overall timebound: max([2, 2+Arg_0]) {O(n)} 1: f0->f2: 1 {O(1)} 0: f2->f3: 1 {O(1)} 2: f2->f2: max([0, Arg_0]) {O(n)} Costbounds: Overall costbound: max([2, 2+Arg_0]) {O(n)} 1: f0->f2: 1 {O(1)} 0: f2->f3: 1 {O(1)} 2: f2->f2: max([0, Arg_0]) {O(n)} Sizebounds: `Lower: 1: f0->f2, Arg_0: Arg_0 {O(n)} 1: f0->f2, Arg_1: 0 {O(1)} 0: f2->f3, Arg_0: min([0, Arg_0]) {O(n)} 0: f2->f3, Arg_1: 1 {O(1)} 2: f2->f2, Arg_0: 0 {O(1)} 2: f2->f2, Arg_1: 0 {O(1)} `Upper: 1: f0->f2, Arg_0: Arg_0 {O(n)} 1: f0->f2, Arg_1: 0 {O(1)} 0: f2->f3, Arg_0: 0 {O(1)} 0: f2->f3, Arg_1: 1 {O(1)} 2: f2->f2, Arg_0: Arg_0 {O(n)} 2: f2->f2, Arg_1: 0 {O(1)} ---------------------------------------- (2) BOUNDS(1, max(2, 2 + Arg_0)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f0 0: f2 -> f3 : B'=1, [ 0>=A ], cost: 1 2: f2 -> f2 : A'=-1+A, [ A>=1 ], cost: 1 1: f0 -> f2 : B'=0, [], cost: 1 Removed unreachable and leaf rules: Start location: f0 2: f2 -> f2 : A'=-1+A, [ A>=1 ], cost: 1 1: f0 -> f2 : B'=0, [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 2: f2 -> f2 : A'=-1+A, [ A>=1 ], cost: 1 Accelerated rule 2 with metering function A, yielding the new rule 3. Removing the simple loops: 2. Accelerated all simple loops using metering functions (where possible): Start location: f0 3: f2 -> f2 : A'=0, [ A>=1 ], cost: A 1: f0 -> f2 : B'=0, [], cost: 1 Chained accelerated rules (with incoming rules): Start location: f0 1: f0 -> f2 : B'=0, [], cost: 1 4: f0 -> f2 : A'=0, B'=0, [ A>=1 ], cost: 1+A Removed unreachable locations (and leaf rules with constant cost): Start location: f0 4: f0 -> f2 : A'=0, B'=0, [ A>=1 ], cost: 1+A ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f0 4: f0 -> f2 : A'=0, B'=0, [ A>=1 ], cost: 1+A Computing asymptotic complexity for rule 4 Solved the limit problem by the following transformations: Created initial limit problem: A (+/+!), 1+A (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==n} resulting limit problem: [solved] Solution: A / n Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1+A Rule guard: [ A>=1 ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)