/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^2). (0) CpxIntTrs (1) Koat Proof [FINISHED, 293 ms] (2) BOUNDS(1, n^2) (3) Loat Proof [FINISHED, 597 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval_start_start(v_n, v_x_0, v_y_0) -> Com_1(eval_start_bb0_in(v_n, v_x_0, v_y_0)) :|: TRUE eval_start_bb0_in(v_n, v_x_0, v_y_0) -> Com_1(eval_start_0(v_n, v_x_0, v_y_0)) :|: TRUE eval_start_0(v_n, v_x_0, v_y_0) -> Com_1(eval_start_1(v_n, v_x_0, v_y_0)) :|: TRUE eval_start_1(v_n, v_x_0, v_y_0) -> Com_1(eval_start_2(v_n, v_x_0, v_y_0)) :|: TRUE eval_start_2(v_n, v_x_0, v_y_0) -> Com_1(eval_start_3(v_n, v_x_0, v_y_0)) :|: TRUE eval_start_3(v_n, v_x_0, v_y_0) -> Com_1(eval_start_4(v_n, v_x_0, v_y_0)) :|: TRUE eval_start_4(v_n, v_x_0, v_y_0) -> Com_1(eval_start_5(v_n, v_x_0, v_y_0)) :|: TRUE eval_start_5(v_n, v_x_0, v_y_0) -> Com_1(eval_start_6(v_n, v_x_0, v_y_0)) :|: TRUE eval_start_6(v_n, v_x_0, v_y_0) -> Com_1(eval_start_bb1_in(v_n, 0, 0)) :|: TRUE eval_start_bb1_in(v_n, v_x_0, v_y_0) -> Com_1(eval_start_bb2_in(v_n, v_x_0, v_y_0)) :|: v_x_0 < v_n eval_start_bb1_in(v_n, v_x_0, v_y_0) -> Com_1(eval_start_bb3_in(v_n, v_x_0, v_y_0)) :|: v_x_0 >= v_n eval_start_bb2_in(v_n, v_x_0, v_y_0) -> Com_1(eval_start_bb1_in(v_n, v_x_0 + 1, v_y_0 + 1)) :|: TRUE eval_start_bb3_in(v_n, v_x_0, v_y_0) -> Com_1(eval_start_bb4_in(v_n, v_x_0, v_y_0)) :|: v_y_0 > 0 eval_start_bb3_in(v_n, v_x_0, v_y_0) -> Com_1(eval_start_bb5_in(v_n, v_x_0, v_y_0)) :|: v_y_0 <= 0 eval_start_bb4_in(v_n, v_x_0, v_y_0) -> Com_1(eval_start_bb1_in(v_n, v_x_0, v_y_0 - 1)) :|: TRUE eval_start_bb5_in(v_n, v_x_0, v_y_0) -> Com_1(eval_start_stop(v_n, v_x_0, v_y_0)) :|: TRUE The start-symbols are:[eval_start_start_3] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 9*ar_2^2 + 8*ar_2 + 19) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) evalstartstart(ar_0, ar_1, ar_2) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2)) (Comp: ?, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2) -> Com_1(evalstart0(ar_0, ar_1, ar_2)) (Comp: ?, Cost: 1) evalstart0(ar_0, ar_1, ar_2) -> Com_1(evalstart1(ar_0, ar_1, ar_2)) (Comp: ?, Cost: 1) evalstart1(ar_0, ar_1, ar_2) -> Com_1(evalstart2(ar_0, ar_1, ar_2)) (Comp: ?, Cost: 1) evalstart2(ar_0, ar_1, ar_2) -> Com_1(evalstart3(ar_0, ar_1, ar_2)) (Comp: ?, Cost: 1) evalstart3(ar_0, ar_1, ar_2) -> Com_1(evalstart4(ar_0, ar_1, ar_2)) (Comp: ?, Cost: 1) evalstart4(ar_0, ar_1, ar_2) -> Com_1(evalstart5(ar_0, ar_1, ar_2)) (Comp: ?, Cost: 1) evalstart5(ar_0, ar_1, ar_2) -> Com_1(evalstart6(ar_0, ar_1, ar_2)) (Comp: ?, Cost: 1) evalstart6(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(0, 0, ar_2)) (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1 + 1, ar_2)) (Comp: ?, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_2)) [ ar_1 >= 1 ] (Comp: ?, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb5in(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] (Comp: ?, Cost: 1) evalstartbb4in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0, ar_1 - 1, ar_2)) (Comp: ?, Cost: 1) evalstartbb5in(ar_0, ar_1, ar_2) -> Com_1(evalstartstop(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalstartstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2) -> Com_1(evalstart0(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2) -> Com_1(evalstart1(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2) -> Com_1(evalstart2(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2) -> Com_1(evalstart3(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1, ar_2) -> Com_1(evalstart4(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart4(ar_0, ar_1, ar_2) -> Com_1(evalstart5(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart5(ar_0, ar_1, ar_2) -> Com_1(evalstart6(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart6(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(0, 0, ar_2)) (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1 + 1, ar_2)) (Comp: ?, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_2)) [ ar_1 >= 1 ] (Comp: ?, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb5in(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] (Comp: ?, Cost: 1) evalstartbb4in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0, ar_1 - 1, ar_2)) (Comp: ?, Cost: 1) evalstartbb5in(ar_0, ar_1, ar_2) -> Com_1(evalstartstop(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalstartstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalstartstart) = 2 Pol(evalstartbb0in) = 2 Pol(evalstart0) = 2 Pol(evalstart1) = 2 Pol(evalstart2) = 2 Pol(evalstart3) = 2 Pol(evalstart4) = 2 Pol(evalstart5) = 2 Pol(evalstart6) = 2 Pol(evalstartbb1in) = 2 Pol(evalstartbb2in) = 2 Pol(evalstartbb3in) = 2 Pol(evalstartbb4in) = 2 Pol(evalstartbb5in) = 1 Pol(evalstartstop) = 0 Pol(koat_start) = 2 orients all transitions weakly and the transitions evalstartbb5in(ar_0, ar_1, ar_2) -> Com_1(evalstartstop(ar_0, ar_1, ar_2)) evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb5in(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2) -> Com_1(evalstart0(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2) -> Com_1(evalstart1(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2) -> Com_1(evalstart2(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2) -> Com_1(evalstart3(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1, ar_2) -> Com_1(evalstart4(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart4(ar_0, ar_1, ar_2) -> Com_1(evalstart5(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart5(ar_0, ar_1, ar_2) -> Com_1(evalstart6(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart6(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(0, 0, ar_2)) (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1 + 1, ar_2)) (Comp: ?, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_2)) [ ar_1 >= 1 ] (Comp: 2, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb5in(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] (Comp: ?, Cost: 1) evalstartbb4in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0, ar_1 - 1, ar_2)) (Comp: 2, Cost: 1) evalstartbb5in(ar_0, ar_1, ar_2) -> Com_1(evalstartstop(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalstartstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalstartstart) = V_3 Pol(evalstartbb0in) = V_3 Pol(evalstart0) = V_3 Pol(evalstart1) = V_3 Pol(evalstart2) = V_3 Pol(evalstart3) = V_3 Pol(evalstart4) = V_3 Pol(evalstart5) = V_3 Pol(evalstart6) = V_3 Pol(evalstartbb1in) = -V_1 + V_3 Pol(evalstartbb2in) = -V_1 + V_3 - 1 Pol(evalstartbb3in) = -V_1 + V_3 Pol(evalstartbb4in) = -V_1 + V_3 Pol(evalstartbb5in) = -V_1 + V_3 Pol(evalstartstop) = -V_1 + V_3 Pol(koat_start) = V_3 orients all transitions weakly and the transition evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2) -> Com_1(evalstart0(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2) -> Com_1(evalstart1(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2) -> Com_1(evalstart2(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2) -> Com_1(evalstart3(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1, ar_2) -> Com_1(evalstart4(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart4(ar_0, ar_1, ar_2) -> Com_1(evalstart5(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart5(ar_0, ar_1, ar_2) -> Com_1(evalstart6(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart6(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(0, 0, ar_2)) (Comp: ar_2, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] (Comp: ?, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1 + 1, ar_2)) (Comp: ?, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_2)) [ ar_1 >= 1 ] (Comp: 2, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb5in(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] (Comp: ?, Cost: 1) evalstartbb4in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0, ar_1 - 1, ar_2)) (Comp: 2, Cost: 1) evalstartbb5in(ar_0, ar_1, ar_2) -> Com_1(evalstartstop(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalstartstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 4 produces the following problem: 5: T: (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2) -> Com_1(evalstart0(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2) -> Com_1(evalstart1(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2) -> Com_1(evalstart2(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2) -> Com_1(evalstart3(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1, ar_2) -> Com_1(evalstart4(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart4(ar_0, ar_1, ar_2) -> Com_1(evalstart5(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart5(ar_0, ar_1, ar_2) -> Com_1(evalstart6(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart6(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(0, 0, ar_2)) (Comp: ar_2, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2)) [ ar_2 >= ar_0 + 1 ] (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2)) [ ar_0 >= ar_2 ] (Comp: ar_2, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1 + 1, ar_2)) (Comp: ?, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_2)) [ ar_1 >= 1 ] (Comp: 2, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb5in(ar_0, ar_1, ar_2)) [ 0 >= ar_1 ] (Comp: ?, Cost: 1) evalstartbb4in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0, ar_1 - 1, ar_2)) (Comp: 2, Cost: 1) evalstartbb5in(ar_0, ar_1, ar_2) -> Com_1(evalstartstop(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalstartstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Applied AI with 'oct' on problem 5 to obtain the following invariants: For symbol evalstartbb1in: X_1 - X_2 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 For symbol evalstartbb2in: X_3 - 1 >= 0 /\ X_2 + X_3 - 1 >= 0 /\ -X_2 + X_3 - 1 >= 0 /\ X_1 + X_3 - 1 >= 0 /\ -X_1 + X_3 - 1 >= 0 /\ X_1 - X_2 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 For symbol evalstartbb3in: X_1 - X_3 >= 0 /\ X_1 - X_2 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 For symbol evalstartbb4in: X_1 - X_3 >= 0 /\ X_1 - X_2 >= 0 /\ X_2 - 1 >= 0 /\ X_1 + X_2 - 2 >= 0 /\ X_1 - 1 >= 0 For symbol evalstartbb5in: X_1 - X_3 >= 0 /\ -X_2 >= 0 /\ X_1 - X_2 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 This yielded the following problem: 6: T: (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalstartstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] (Comp: 2, Cost: 1) evalstartbb5in(ar_0, ar_1, ar_2) -> Com_1(evalstartstop(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 >= 0 /\ -ar_1 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] (Comp: ?, Cost: 1) evalstartbb4in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0, ar_1 - 1, ar_2)) [ ar_0 - ar_2 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_1 - 1 >= 0 /\ ar_0 + ar_1 - 2 >= 0 /\ ar_0 - 1 >= 0 ] (Comp: 2, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb5in(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ 0 >= ar_1 ] (Comp: ?, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_1 >= 1 ] (Comp: ar_2, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1 + 1, ar_2)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] (Comp: ?, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2)) [ ar_0 - ar_1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_0 >= ar_2 ] (Comp: ar_2, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2)) [ ar_0 - ar_1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_2 >= ar_0 + 1 ] (Comp: 1, Cost: 1) evalstart6(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(0, 0, ar_2)) (Comp: 1, Cost: 1) evalstart5(ar_0, ar_1, ar_2) -> Com_1(evalstart6(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart4(ar_0, ar_1, ar_2) -> Com_1(evalstart5(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1, ar_2) -> Com_1(evalstart4(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2) -> Com_1(evalstart3(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2) -> Com_1(evalstart2(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2) -> Com_1(evalstart1(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2) -> Com_1(evalstart0(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2)) start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalstartbb4in) = 3*V_2 Pol(evalstartbb1in) = 3*V_2 + 2 Pol(evalstartbb3in) = 3*V_2 + 1 and size complexities S("evalstartstart(ar_0, ar_1, ar_2) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2))", 0-0) = ar_0 S("evalstartstart(ar_0, ar_1, ar_2) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2))", 0-1) = ar_1 S("evalstartstart(ar_0, ar_1, ar_2) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2))", 0-2) = ar_2 S("evalstartbb0in(ar_0, ar_1, ar_2) -> Com_1(evalstart0(ar_0, ar_1, ar_2))", 0-0) = ar_0 S("evalstartbb0in(ar_0, ar_1, ar_2) -> Com_1(evalstart0(ar_0, ar_1, ar_2))", 0-1) = ar_1 S("evalstartbb0in(ar_0, ar_1, ar_2) -> Com_1(evalstart0(ar_0, ar_1, ar_2))", 0-2) = ar_2 S("evalstart0(ar_0, ar_1, ar_2) -> Com_1(evalstart1(ar_0, ar_1, ar_2))", 0-0) = ar_0 S("evalstart0(ar_0, ar_1, ar_2) -> Com_1(evalstart1(ar_0, ar_1, ar_2))", 0-1) = ar_1 S("evalstart0(ar_0, ar_1, ar_2) -> Com_1(evalstart1(ar_0, ar_1, ar_2))", 0-2) = ar_2 S("evalstart1(ar_0, ar_1, ar_2) -> Com_1(evalstart2(ar_0, ar_1, ar_2))", 0-0) = ar_0 S("evalstart1(ar_0, ar_1, ar_2) -> Com_1(evalstart2(ar_0, ar_1, ar_2))", 0-1) = ar_1 S("evalstart1(ar_0, ar_1, ar_2) -> Com_1(evalstart2(ar_0, ar_1, ar_2))", 0-2) = ar_2 S("evalstart2(ar_0, ar_1, ar_2) -> Com_1(evalstart3(ar_0, ar_1, ar_2))", 0-0) = ar_0 S("evalstart2(ar_0, ar_1, ar_2) -> Com_1(evalstart3(ar_0, ar_1, ar_2))", 0-1) = ar_1 S("evalstart2(ar_0, ar_1, ar_2) -> Com_1(evalstart3(ar_0, ar_1, ar_2))", 0-2) = ar_2 S("evalstart3(ar_0, ar_1, ar_2) -> Com_1(evalstart4(ar_0, ar_1, ar_2))", 0-0) = ar_0 S("evalstart3(ar_0, ar_1, ar_2) -> Com_1(evalstart4(ar_0, ar_1, ar_2))", 0-1) = ar_1 S("evalstart3(ar_0, ar_1, ar_2) -> Com_1(evalstart4(ar_0, ar_1, ar_2))", 0-2) = ar_2 S("evalstart4(ar_0, ar_1, ar_2) -> Com_1(evalstart5(ar_0, ar_1, ar_2))", 0-0) = ar_0 S("evalstart4(ar_0, ar_1, ar_2) -> Com_1(evalstart5(ar_0, ar_1, ar_2))", 0-1) = ar_1 S("evalstart4(ar_0, ar_1, ar_2) -> Com_1(evalstart5(ar_0, ar_1, ar_2))", 0-2) = ar_2 S("evalstart5(ar_0, ar_1, ar_2) -> Com_1(evalstart6(ar_0, ar_1, ar_2))", 0-0) = ar_0 S("evalstart5(ar_0, ar_1, ar_2) -> Com_1(evalstart6(ar_0, ar_1, ar_2))", 0-1) = ar_1 S("evalstart5(ar_0, ar_1, ar_2) -> Com_1(evalstart6(ar_0, ar_1, ar_2))", 0-2) = ar_2 S("evalstart6(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(0, 0, ar_2))", 0-0) = 0 S("evalstart6(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(0, 0, ar_2))", 0-1) = 0 S("evalstart6(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(0, 0, ar_2))", 0-2) = ar_2 S("evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2)) [ ar_0 - ar_1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_2 >= ar_0 + 1 ]", 0-0) = ar_2 S("evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2)) [ ar_0 - ar_1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_2 >= ar_0 + 1 ]", 0-1) = ar_2 S("evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2)) [ ar_0 - ar_1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_2 >= ar_0 + 1 ]", 0-2) = ar_2 S("evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2)) [ ar_0 - ar_1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_0 >= ar_2 ]", 0-0) = ar_2 S("evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2)) [ ar_0 - ar_1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_0 >= ar_2 ]", 0-1) = ar_2 S("evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2)) [ ar_0 - ar_1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_0 >= ar_2 ]", 0-2) = ar_2 S("evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1 + 1, ar_2)) [ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 1 >= 0 /\\ -ar_1 + ar_2 - 1 >= 0 /\\ ar_0 + ar_2 - 1 >= 0 /\\ -ar_0 + ar_2 - 1 >= 0 /\\ ar_0 - ar_1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 ]", 0-0) = ar_2 S("evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1 + 1, ar_2)) [ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 1 >= 0 /\\ -ar_1 + ar_2 - 1 >= 0 /\\ ar_0 + ar_2 - 1 >= 0 /\\ -ar_0 + ar_2 - 1 >= 0 /\\ ar_0 - ar_1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 ]", 0-1) = ar_2 S("evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1 + 1, ar_2)) [ ar_2 - 1 >= 0 /\\ ar_1 + ar_2 - 1 >= 0 /\\ -ar_1 + ar_2 - 1 >= 0 /\\ ar_0 + ar_2 - 1 >= 0 /\\ -ar_0 + ar_2 - 1 >= 0 /\\ ar_0 - ar_1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 ]", 0-2) = ar_2 S("evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 >= 0 /\\ ar_0 - ar_1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_1 >= 1 ]", 0-0) = ar_2 S("evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 >= 0 /\\ ar_0 - ar_1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_1 >= 1 ]", 0-1) = ar_2 S("evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 >= 0 /\\ ar_0 - ar_1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ ar_1 >= 1 ]", 0-2) = ar_2 S("evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb5in(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 >= 0 /\\ ar_0 - ar_1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ 0 >= ar_1 ]", 0-0) = ar_2 S("evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb5in(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 >= 0 /\\ ar_0 - ar_1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ 0 >= ar_1 ]", 0-1) = 0 S("evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb5in(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 >= 0 /\\ ar_0 - ar_1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 /\\ 0 >= ar_1 ]", 0-2) = ar_2 S("evalstartbb4in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0, ar_1 - 1, ar_2)) [ ar_0 - ar_2 >= 0 /\\ ar_0 - ar_1 >= 0 /\\ ar_1 - 1 >= 0 /\\ ar_0 + ar_1 - 2 >= 0 /\\ ar_0 - 1 >= 0 ]", 0-0) = ar_2 S("evalstartbb4in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0, ar_1 - 1, ar_2)) [ ar_0 - ar_2 >= 0 /\\ ar_0 - ar_1 >= 0 /\\ ar_1 - 1 >= 0 /\\ ar_0 + ar_1 - 2 >= 0 /\\ ar_0 - 1 >= 0 ]", 0-1) = ar_2 S("evalstartbb4in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0, ar_1 - 1, ar_2)) [ ar_0 - ar_2 >= 0 /\\ ar_0 - ar_1 >= 0 /\\ ar_1 - 1 >= 0 /\\ ar_0 + ar_1 - 2 >= 0 /\\ ar_0 - 1 >= 0 ]", 0-2) = ar_2 S("evalstartbb5in(ar_0, ar_1, ar_2) -> Com_1(evalstartstop(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 >= 0 /\\ -ar_1 >= 0 /\\ ar_0 - ar_1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 ]", 0-0) = ar_2 S("evalstartbb5in(ar_0, ar_1, ar_2) -> Com_1(evalstartstop(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 >= 0 /\\ -ar_1 >= 0 /\\ ar_0 - ar_1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 ]", 0-1) = 0 S("evalstartbb5in(ar_0, ar_1, ar_2) -> Com_1(evalstartstop(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 >= 0 /\\ -ar_1 >= 0 /\\ ar_0 - ar_1 >= 0 /\\ ar_1 >= 0 /\\ ar_0 + ar_1 >= 0 /\\ ar_0 >= 0 ]", 0-2) = ar_2 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalstartstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-0) = ar_0 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalstartstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-1) = ar_1 S("koat_start(ar_0, ar_1, ar_2) -> Com_1(evalstartstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ]", 0-2) = ar_2 orients the transitions evalstartbb4in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0, ar_1 - 1, ar_2)) [ ar_0 - ar_2 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_1 - 1 >= 0 /\ ar_0 + ar_1 - 2 >= 0 /\ ar_0 - 1 >= 0 ] evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_1 >= 1 ] evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2)) [ ar_0 - ar_1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_0 >= ar_2 ] weakly and the transitions evalstartbb4in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0, ar_1 - 1, ar_2)) [ ar_0 - ar_2 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_1 - 1 >= 0 /\ ar_0 + ar_1 - 2 >= 0 /\ ar_0 - 1 >= 0 ] evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_1 >= 1 ] evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2)) [ ar_0 - ar_1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_0 >= ar_2 ] strictly and produces the following problem: 7: T: (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2) -> Com_1(evalstartstart(ar_0, ar_1, ar_2)) [ 0 <= 0 ] (Comp: 2, Cost: 1) evalstartbb5in(ar_0, ar_1, ar_2) -> Com_1(evalstartstop(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 >= 0 /\ -ar_1 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] (Comp: 3*ar_2^2 + 2*ar_2 + 2, Cost: 1) evalstartbb4in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0, ar_1 - 1, ar_2)) [ ar_0 - ar_2 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_1 - 1 >= 0 /\ ar_0 + ar_1 - 2 >= 0 /\ ar_0 - 1 >= 0 ] (Comp: 2, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb5in(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ 0 >= ar_1 ] (Comp: 3*ar_2^2 + 2*ar_2 + 2, Cost: 1) evalstartbb3in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb4in(ar_0, ar_1, ar_2)) [ ar_0 - ar_2 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_1 >= 1 ] (Comp: ar_2, Cost: 1) evalstartbb2in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(ar_0 + 1, ar_1 + 1, ar_2)) [ ar_2 - 1 >= 0 /\ ar_1 + ar_2 - 1 >= 0 /\ -ar_1 + ar_2 - 1 >= 0 /\ ar_0 + ar_2 - 1 >= 0 /\ -ar_0 + ar_2 - 1 >= 0 /\ ar_0 - ar_1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 ] (Comp: 3*ar_2^2 + 2*ar_2 + 2, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb3in(ar_0, ar_1, ar_2)) [ ar_0 - ar_1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_0 >= ar_2 ] (Comp: ar_2, Cost: 1) evalstartbb1in(ar_0, ar_1, ar_2) -> Com_1(evalstartbb2in(ar_0, ar_1, ar_2)) [ ar_0 - ar_1 >= 0 /\ ar_1 >= 0 /\ ar_0 + ar_1 >= 0 /\ ar_0 >= 0 /\ ar_2 >= ar_0 + 1 ] (Comp: 1, Cost: 1) evalstart6(ar_0, ar_1, ar_2) -> Com_1(evalstartbb1in(0, 0, ar_2)) (Comp: 1, Cost: 1) evalstart5(ar_0, ar_1, ar_2) -> Com_1(evalstart6(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart4(ar_0, ar_1, ar_2) -> Com_1(evalstart5(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart3(ar_0, ar_1, ar_2) -> Com_1(evalstart4(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart2(ar_0, ar_1, ar_2) -> Com_1(evalstart3(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart1(ar_0, ar_1, ar_2) -> Com_1(evalstart2(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstart0(ar_0, ar_1, ar_2) -> Com_1(evalstart1(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstartbb0in(ar_0, ar_1, ar_2) -> Com_1(evalstart0(ar_0, ar_1, ar_2)) (Comp: 1, Cost: 1) evalstartstart(ar_0, ar_1, ar_2) -> Com_1(evalstartbb0in(ar_0, ar_1, ar_2)) start location: koat_start leaf cost: 0 Complexity upper bound 9*ar_2^2 + 8*ar_2 + 19 Time: 0.310 sec (SMT: 0.264 sec) ---------------------------------------- (2) BOUNDS(1, n^2) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: evalstartstart 0: evalstartstart -> evalstartbb0in : [], cost: 1 1: evalstartbb0in -> evalstart0 : [], cost: 1 2: evalstart0 -> evalstart1 : [], cost: 1 3: evalstart1 -> evalstart2 : [], cost: 1 4: evalstart2 -> evalstart3 : [], cost: 1 5: evalstart3 -> evalstart4 : [], cost: 1 6: evalstart4 -> evalstart5 : [], cost: 1 7: evalstart5 -> evalstart6 : [], cost: 1 8: evalstart6 -> evalstartbb1in : A'=0, B'=0, [], cost: 1 9: evalstartbb1in -> evalstartbb2in : [ C>=1+A ], cost: 1 10: evalstartbb1in -> evalstartbb3in : [ A>=C ], cost: 1 11: evalstartbb2in -> evalstartbb1in : A'=1+A, B'=1+B, [], cost: 1 12: evalstartbb3in -> evalstartbb4in : [ B>=1 ], cost: 1 13: evalstartbb3in -> evalstartbb5in : [ 0>=B ], cost: 1 14: evalstartbb4in -> evalstartbb1in : B'=-1+B, [], cost: 1 15: evalstartbb5in -> evalstartstop : [], cost: 1 Removed unreachable and leaf rules: Start location: evalstartstart 0: evalstartstart -> evalstartbb0in : [], cost: 1 1: evalstartbb0in -> evalstart0 : [], cost: 1 2: evalstart0 -> evalstart1 : [], cost: 1 3: evalstart1 -> evalstart2 : [], cost: 1 4: evalstart2 -> evalstart3 : [], cost: 1 5: evalstart3 -> evalstart4 : [], cost: 1 6: evalstart4 -> evalstart5 : [], cost: 1 7: evalstart5 -> evalstart6 : [], cost: 1 8: evalstart6 -> evalstartbb1in : A'=0, B'=0, [], cost: 1 9: evalstartbb1in -> evalstartbb2in : [ C>=1+A ], cost: 1 10: evalstartbb1in -> evalstartbb3in : [ A>=C ], cost: 1 11: evalstartbb2in -> evalstartbb1in : A'=1+A, B'=1+B, [], cost: 1 12: evalstartbb3in -> evalstartbb4in : [ B>=1 ], cost: 1 14: evalstartbb4in -> evalstartbb1in : B'=-1+B, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: evalstartstart 23: evalstartstart -> evalstartbb1in : A'=0, B'=0, [], cost: 9 24: evalstartbb1in -> evalstartbb1in : A'=1+A, B'=1+B, [ C>=1+A ], cost: 2 26: evalstartbb1in -> evalstartbb1in : B'=-1+B, [ A>=C && B>=1 ], cost: 3 Accelerating simple loops of location 9. Accelerating the following rules: 24: evalstartbb1in -> evalstartbb1in : A'=1+A, B'=1+B, [ C>=1+A ], cost: 2 26: evalstartbb1in -> evalstartbb1in : B'=-1+B, [ A>=C && B>=1 ], cost: 3 Accelerated rule 24 with metering function C-A, yielding the new rule 27. Accelerated rule 26 with metering function B, yielding the new rule 28. Removing the simple loops: 24 26. Accelerated all simple loops using metering functions (where possible): Start location: evalstartstart 23: evalstartstart -> evalstartbb1in : A'=0, B'=0, [], cost: 9 27: evalstartbb1in -> evalstartbb1in : A'=C, B'=C-A+B, [ C>=1+A ], cost: 2*C-2*A 28: evalstartbb1in -> evalstartbb1in : B'=0, [ A>=C && B>=1 ], cost: 3*B Chained accelerated rules (with incoming rules): Start location: evalstartstart 23: evalstartstart -> evalstartbb1in : A'=0, B'=0, [], cost: 9 29: evalstartstart -> evalstartbb1in : A'=C, B'=C, [ C>=1 ], cost: 9+2*C Removed unreachable locations (and leaf rules with constant cost): Start location: evalstartstart 29: evalstartstart -> evalstartbb1in : A'=C, B'=C, [ C>=1 ], cost: 9+2*C ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: evalstartstart 29: evalstartstart -> evalstartbb1in : A'=C, B'=C, [ C>=1 ], cost: 9+2*C Computing asymptotic complexity for rule 29 Solved the limit problem by the following transformations: Created initial limit problem: 9+2*C (+), C (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {C==n} resulting limit problem: [solved] Solution: C / n Resulting cost 9+2*n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 9+2*n Rule cost: 9+2*C Rule guard: [ C>=1 ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)