/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(1, 1 + Arg_0 + Arg_1)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 35 ms] (2) BOUNDS(1, max(1, 1 + Arg_0 + Arg_1)) (3) Loat Proof [FINISHED, 640 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f0(A, B) -> Com_1(f1(A, B)) :|: A >= 1 f1(A, B) -> Com_1(f1(A, B - A)) :|: A >= 1 && B >= 0 The start-symbols are:[f0_2] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, max([1, 1+Arg_0+Arg_1]) {O(n)}) Initial Complexity Problem: Start: f0 Program_Vars: Arg_0, Arg_1 Temp_Vars: Locations: f0, f1 Transitions: f0(Arg_0,Arg_1) -> f1(Arg_0,Arg_1):|:1 <= Arg_0 f1(Arg_0,Arg_1) -> f1(Arg_0,Arg_1-Arg_0):|:1 <= Arg_0 && 1 <= Arg_0 && 0 <= Arg_1 Timebounds: Overall timebound: max([1, 1+Arg_0+Arg_1]) {O(n)} 0: f0->f1: 1 {O(1)} 1: f1->f1: max([0, Arg_0+Arg_1]) {O(n)} Costbounds: Overall costbound: max([1, 1+Arg_0+Arg_1]) {O(n)} 0: f0->f1: 1 {O(1)} 1: f1->f1: max([0, Arg_0+Arg_1]) {O(n)} Sizebounds: `Lower: 0: f0->f1, Arg_0: 1 {O(1)} 0: f0->f1, Arg_1: Arg_1 {O(n)} 1: f1->f1, Arg_0: 1 {O(1)} 1: f1->f1, Arg_1: -(Arg_0) {O(n)} `Upper: 0: f0->f1, Arg_0: Arg_0 {O(n)} 0: f0->f1, Arg_1: Arg_1 {O(n)} 1: f1->f1, Arg_0: Arg_0 {O(n)} 1: f1->f1, Arg_1: Arg_1 {O(n)} ---------------------------------------- (2) BOUNDS(1, max(1, 1 + Arg_0 + Arg_1)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f0 0: f0 -> f1 : [ A>=1 ], cost: 1 1: f1 -> f1 : B'=-A+B, [ A>=1 && B>=0 ], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: f1 -> f1 : B'=-A+B, [ A>=1 && B>=0 ], cost: 1 Accelerated rule 1 with backward acceleration, yielding the new rule 2. Removing the simple loops: 1. Accelerated all simple loops using metering functions (where possible): Start location: f0 0: f0 -> f1 : [ A>=1 ], cost: 1 2: f1 -> f1 : B'=-k*A+B, [ A>=1 && B>=0 && k>0 && -(-1+k)*A+B>=0 ], cost: k Chained accelerated rules (with incoming rules): Start location: f0 0: f0 -> f1 : [ A>=1 ], cost: 1 3: f0 -> f1 : B'=-k*A+B, [ A>=1 && B>=0 && k>0 && -(-1+k)*A+B>=0 ], cost: 1+k Removed unreachable locations (and leaf rules with constant cost): Start location: f0 3: f0 -> f1 : B'=-k*A+B, [ A>=1 && B>=0 && k>0 && -(-1+k)*A+B>=0 ], cost: 1+k ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f0 3: f0 -> f1 : B'=-k*A+B, [ A>=1 && B>=0 && k>0 && -(-1+k)*A+B>=0 ], cost: 1+k Computing asymptotic complexity for rule 3 Solved the limit problem by the following transformations: Created initial limit problem: 1+B (+/+!), 1-(-1+k)*A+B (+/+!), k (+/+!), 1+k (+), A (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {k==n,A==1,B==2*n} resulting limit problem: [solved] Solved the limit problem by the following transformations: Created initial limit problem: 1+B (+/+!), 1-(-1+k)*A+B (+/+!), k (+/+!), 1+k (+), A (+/+!) [not solved] applying transformation rule (C) using substitution {A==1} resulting limit problem: 1 (+/+!), 2-k+B (+/+!), 1+B (+/+!), k (+/+!), 1+k (+) [not solved] applying transformation rule (B), deleting 1 (+/+!) resulting limit problem: 2-k+B (+/+!), 1+B (+/+!), k (+/+!), 1+k (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {k==n,B==n} resulting limit problem: [solved] Solution: k / n A / 1 B / 2*n Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1+k Rule guard: [ A>=1 && B>=0 && k>0 && -(-1+k)*A+B>=0 ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)