/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(2 + Arg_0, 3)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 140 ms] (2) BOUNDS(1, max(2 + Arg_0, 3)) (3) Loat Proof [FINISHED, 146 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f5(A, B) -> Com_1(f5(-(1) + A, B)) :|: A >= 1 f5(A, B) -> Com_1(f1(A, C)) :|: 0 >= A f300(A, B) -> Com_1(f5(-(1) + A, B)) :|: A >= 1 f300(A, B) -> Com_1(f1(A, C)) :|: 0 >= A The start-symbols are:[f300_2] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, max([3, 2+Arg_0]) {O(n)}) Initial Complexity Problem: Start: f300 Program_Vars: Arg_0, Arg_1 Temp_Vars: C Locations: f1, f300, f5 Transitions: f300(Arg_0,Arg_1) -> f1(Arg_0,C):|:Arg_0 <= 0 f300(Arg_0,Arg_1) -> f5(-1+Arg_0,Arg_1):|:1 <= Arg_0 f5(Arg_0,Arg_1) -> f1(Arg_0,C):|:0 <= Arg_0 && Arg_0 <= 0 f5(Arg_0,Arg_1) -> f5(-1+Arg_0,Arg_1):|:0 <= Arg_0 && 1 <= Arg_0 Timebounds: Overall timebound: max([3, 2+Arg_0]) {O(n)} 2: f300->f5: 1 {O(1)} 3: f300->f1: 1 {O(1)} 0: f5->f5: max([0, -1+Arg_0]) {O(n)} 1: f5->f1: 1 {O(1)} Costbounds: Overall costbound: max([3, 2+Arg_0]) {O(n)} 2: f300->f5: 1 {O(1)} 3: f300->f1: 1 {O(1)} 0: f5->f5: max([0, -1+Arg_0]) {O(n)} 1: f5->f1: 1 {O(1)} Sizebounds: `Lower: 2: f300->f5, Arg_0: 0 {O(1)} 2: f300->f5, Arg_1: Arg_1 {O(n)} 3: f300->f1, Arg_0: Arg_0 {O(n)} 0: f5->f5, Arg_0: 0 {O(1)} 0: f5->f5, Arg_1: Arg_1 {O(n)} 1: f5->f1, Arg_0: 0 {O(1)} `Upper: 2: f300->f5, Arg_0: -1+Arg_0 {O(n)} 2: f300->f5, Arg_1: Arg_1 {O(n)} 3: f300->f1, Arg_0: 0 {O(1)} 0: f5->f5, Arg_0: -1+Arg_0 {O(n)} 0: f5->f5, Arg_1: Arg_1 {O(n)} 1: f5->f1, Arg_0: 0 {O(1)} ---------------------------------------- (2) BOUNDS(1, max(2 + Arg_0, 3)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f300 0: f5 -> f5 : A'=-1+A, [ A>=1 ], cost: 1 1: f5 -> f1 : B'=free, [ 0>=A ], cost: 1 2: f300 -> f5 : A'=-1+A, [ A>=1 ], cost: 1 3: f300 -> f1 : B'=free_1, [ 0>=A ], cost: 1 Removed unreachable and leaf rules: Start location: f300 0: f5 -> f5 : A'=-1+A, [ A>=1 ], cost: 1 2: f300 -> f5 : A'=-1+A, [ A>=1 ], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 0: f5 -> f5 : A'=-1+A, [ A>=1 ], cost: 1 Accelerated rule 0 with metering function A, yielding the new rule 4. Removing the simple loops: 0. Accelerated all simple loops using metering functions (where possible): Start location: f300 4: f5 -> f5 : A'=0, [ A>=1 ], cost: A 2: f300 -> f5 : A'=-1+A, [ A>=1 ], cost: 1 Chained accelerated rules (with incoming rules): Start location: f300 2: f300 -> f5 : A'=-1+A, [ A>=1 ], cost: 1 5: f300 -> f5 : A'=0, [ -1+A>=1 ], cost: A Removed unreachable locations (and leaf rules with constant cost): Start location: f300 5: f300 -> f5 : A'=0, [ -1+A>=1 ], cost: A ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f300 5: f300 -> f5 : A'=0, [ -1+A>=1 ], cost: A Computing asymptotic complexity for rule 5 Solved the limit problem by the following transformations: Created initial limit problem: -1+A (+/+!), A (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==n} resulting limit problem: [solved] Solution: A / n Resulting cost n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: n Rule cost: A Rule guard: [ -1+A>=1 ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)