/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^2, max(1, 1 + -1 * Arg_0 + Arg_0^2) + nat(2 * Arg_0)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 169 ms] (2) BOUNDS(1, max(1, 1 + -1 * Arg_0 + Arg_0^2) + nat(2 * Arg_0)) (3) Loat Proof [FINISHED, 336 ms] (4) BOUNDS(n^2, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f1(A, B) -> Com_1(f3(A, A)) :|: A >= 1 f3(A, B) -> Com_1(f3(A, B - 1)) :|: B >= 1 f3(A, B) -> Com_1(f3(A - 1, A - 1)) :|: 0 >= B && A >= 2 The start-symbols are:[f1_2] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, max([1, 1+Arg_0*(-1+Arg_0)])+max([0, Arg_0])+max([0, Arg_0]) {O(n^2)}) Initial Complexity Problem: Start: f1 Program_Vars: Arg_0, Arg_1 Temp_Vars: Locations: f1, f3 Transitions: f1(Arg_0,Arg_1) -> f3(Arg_0,Arg_0):|:1 <= Arg_0 f3(Arg_0,Arg_1) -> f3(Arg_0,Arg_1-1):|:Arg_1 <= Arg_0 && 1 <= Arg_0 && 1 <= Arg_1 f3(Arg_0,Arg_1) -> f3(Arg_0-1,Arg_0-1):|:Arg_1 <= Arg_0 && 1 <= Arg_0 && Arg_1 <= 0 && 2 <= Arg_0 Timebounds: Overall timebound: max([1, 1+Arg_0*(-1+Arg_0)])+max([0, Arg_0])+max([0, Arg_0]) {O(n^2)} 0: f1->f3: 1 {O(1)} 1: f3->f3: max([0, Arg_0*(-1+Arg_0)])+max([0, Arg_0]) {O(n^2)} 2: f3->f3: max([0, Arg_0]) {O(n)} Costbounds: Overall costbound: max([1, 1+Arg_0*(-1+Arg_0)])+max([0, Arg_0])+max([0, Arg_0]) {O(n^2)} 0: f1->f3: 1 {O(1)} 1: f3->f3: max([0, Arg_0*(-1+Arg_0)])+max([0, Arg_0]) {O(n^2)} 2: f3->f3: max([0, Arg_0]) {O(n)} Sizebounds: `Lower: 0: f1->f3, Arg_0: 1 {O(1)} 0: f1->f3, Arg_1: 1 {O(1)} 1: f3->f3, Arg_0: 1 {O(1)} 1: f3->f3, Arg_1: 0 {O(1)} 2: f3->f3, Arg_0: 1 {O(1)} 2: f3->f3, Arg_1: 1 {O(1)} `Upper: 0: f1->f3, Arg_0: Arg_0 {O(n)} 0: f1->f3, Arg_1: Arg_0 {O(n)} 1: f3->f3, Arg_0: Arg_0 {O(n)} 1: f3->f3, Arg_1: max([Arg_0, -1+Arg_0]) {O(n)} 2: f3->f3, Arg_0: Arg_0 {O(n)} 2: f3->f3, Arg_1: -1+Arg_0 {O(n)} ---------------------------------------- (2) BOUNDS(1, max(1, 1 + -1 * Arg_0 + Arg_0^2) + nat(2 * Arg_0)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f1 0: f1 -> f3 : B'=A, [ A>=1 ], cost: 1 1: f3 -> f3 : B'=-1+B, [ B>=1 ], cost: 1 2: f3 -> f3 : A'=-1+A, B'=-1+A, [ 0>=B && A>=2 ], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: f3 -> f3 : B'=-1+B, [ B>=1 ], cost: 1 2: f3 -> f3 : A'=-1+A, B'=-1+A, [ 0>=B && A>=2 ], cost: 1 Accelerated rule 1 with metering function B, yielding the new rule 3. Found no metering function for rule 2. Nested simple loops 2 (outer loop) and 3 (inner loop) with metering function -1+A, resulting in the new rules: 4, 5. Removing the simple loops: 1 2. Accelerated all simple loops using metering functions (where possible): Start location: f1 0: f1 -> f3 : B'=A, [ A>=1 ], cost: 1 3: f3 -> f3 : B'=0, [ B>=1 ], cost: B 4: f3 -> f3 : A'=1, B'=1, [ B>=1 && A>=2 ], cost: -3/2+(-1+A)*A+3/2*A-1/2*(-1+A)^2 5: f3 -> f3 : A'=1, B'=1, [ 0>=B && -1+A>=2 ], cost: -2-1/2*(-2+A)^2+3/2*A+(-1+A)*(-2+A) Chained accelerated rules (with incoming rules): Start location: f1 0: f1 -> f3 : B'=A, [ A>=1 ], cost: 1 6: f1 -> f3 : B'=0, [ A>=1 ], cost: 1+A 7: f1 -> f3 : A'=1, B'=1, [ A>=2 ], cost: -1/2+(-1+A)*A+3/2*A-1/2*(-1+A)^2 Removed unreachable locations (and leaf rules with constant cost): Start location: f1 6: f1 -> f3 : B'=0, [ A>=1 ], cost: 1+A 7: f1 -> f3 : A'=1, B'=1, [ A>=2 ], cost: -1/2+(-1+A)*A+3/2*A-1/2*(-1+A)^2 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f1 6: f1 -> f3 : B'=0, [ A>=1 ], cost: 1+A 7: f1 -> f3 : A'=1, B'=1, [ A>=2 ], cost: -1/2+(-1+A)*A+3/2*A-1/2*(-1+A)^2 Computing asymptotic complexity for rule 6 Solved the limit problem by the following transformations: Created initial limit problem: A (+/+!), 1+A (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==n} resulting limit problem: [solved] Solution: A / n Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Computing asymptotic complexity for rule 7 Solved the limit problem by the following transformations: Created initial limit problem: -1+A (+/+!), -1+3/2*A+1/2*A^2 (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==n} resulting limit problem: [solved] Solution: A / n Resulting cost -1+3/2*n+1/2*n^2 has complexity: Poly(n^2) Found new complexity Poly(n^2). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^2) Cpx degree: 2 Solved cost: -1+3/2*n+1/2*n^2 Rule cost: -1/2+(-1+A)*A+3/2*A-1/2*(-1+A)^2 Rule guard: [ A>=2 ] WORST_CASE(Omega(n^2),?) ---------------------------------------- (4) BOUNDS(n^2, INF)