/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 18 ms] (2) BOUNDS(1, n^1) (3) Loat Proof [FINISHED, 140 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f300(A, B) -> Com_1(f1(A, C)) :|: 0 >= A + 1 f300(A, B) -> Com_1(f300(-(1) + A, B)) :|: A >= 0 f2(A, B) -> Com_1(f300(A, B)) :|: TRUE The start-symbols are:[f2_2] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, ar_0 + 3) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) f300(ar_0, ar_1) -> Com_1(f1(ar_0, c)) [ 0 >= ar_0 + 1 ] (Comp: ?, Cost: 1) f300(ar_0, ar_1) -> Com_1(f300(ar_0 - 1, ar_1)) [ ar_0 >= 0 ] (Comp: ?, Cost: 1) f2(ar_0, ar_1) -> Com_1(f300(ar_0, ar_1)) (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(f2(ar_0, ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: ?, Cost: 1) f300(ar_0, ar_1) -> Com_1(f1(ar_0, c)) [ 0 >= ar_0 + 1 ] (Comp: ?, Cost: 1) f300(ar_0, ar_1) -> Com_1(f300(ar_0 - 1, ar_1)) [ ar_0 >= 0 ] (Comp: 1, Cost: 1) f2(ar_0, ar_1) -> Com_1(f300(ar_0, ar_1)) (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(f2(ar_0, ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f300) = 1 Pol(f1) = 0 Pol(f2) = 1 Pol(koat_start) = 1 orients all transitions weakly and the transition f300(ar_0, ar_1) -> Com_1(f1(ar_0, c)) [ 0 >= ar_0 + 1 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) f300(ar_0, ar_1) -> Com_1(f1(ar_0, c)) [ 0 >= ar_0 + 1 ] (Comp: ?, Cost: 1) f300(ar_0, ar_1) -> Com_1(f300(ar_0 - 1, ar_1)) [ ar_0 >= 0 ] (Comp: 1, Cost: 1) f2(ar_0, ar_1) -> Com_1(f300(ar_0, ar_1)) (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(f2(ar_0, ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f300) = V_1 + 1 Pol(f1) = V_1 Pol(f2) = V_1 + 1 Pol(koat_start) = V_1 + 1 orients all transitions weakly and the transition f300(ar_0, ar_1) -> Com_1(f300(ar_0 - 1, ar_1)) [ ar_0 >= 0 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) f300(ar_0, ar_1) -> Com_1(f1(ar_0, c)) [ 0 >= ar_0 + 1 ] (Comp: ar_0 + 1, Cost: 1) f300(ar_0, ar_1) -> Com_1(f300(ar_0 - 1, ar_1)) [ ar_0 >= 0 ] (Comp: 1, Cost: 1) f2(ar_0, ar_1) -> Com_1(f300(ar_0, ar_1)) (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(f2(ar_0, ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound ar_0 + 3 Time: 0.048 sec (SMT: 0.045 sec) ---------------------------------------- (2) BOUNDS(1, n^1) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f2 0: f300 -> f1 : B'=free, [ 0>=1+A ], cost: 1 1: f300 -> f300 : A'=-1+A, [ A>=0 ], cost: 1 2: f2 -> f300 : [], cost: 1 Removed unreachable and leaf rules: Start location: f2 1: f300 -> f300 : A'=-1+A, [ A>=0 ], cost: 1 2: f2 -> f300 : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 1: f300 -> f300 : A'=-1+A, [ A>=0 ], cost: 1 Accelerated rule 1 with metering function 1+A, yielding the new rule 3. Removing the simple loops: 1. Accelerated all simple loops using metering functions (where possible): Start location: f2 3: f300 -> f300 : A'=-1, [ A>=0 ], cost: 1+A 2: f2 -> f300 : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: f2 2: f2 -> f300 : [], cost: 1 4: f2 -> f300 : A'=-1, [ A>=0 ], cost: 2+A Removed unreachable locations (and leaf rules with constant cost): Start location: f2 4: f2 -> f300 : A'=-1, [ A>=0 ], cost: 2+A ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f2 4: f2 -> f300 : A'=-1, [ A>=0 ], cost: 2+A Computing asymptotic complexity for rule 4 Solved the limit problem by the following transformations: Created initial limit problem: 2+A (+), 1+A (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==n} resulting limit problem: [solved] Solution: A / n Resulting cost 2+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 2+n Rule cost: 2+A Rule guard: [ A>=0 ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)