/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, 1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 5 ms] (2) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f0(A, B, C, D, E) -> Com_1(f7(F, F, 10, 0, E)) :|: TRUE f7(A, B, C, D, E) -> Com_1(f7(A, B, C, D + 1, F)) :|: C >= D + 1 f7(A, B, C, D, E) -> Com_1(f19(A, B, C, D, E)) :|: D >= C The start-symbols are:[f0_5] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 12) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f7(f, f, 10, 0, ar_4)) (Comp: ?, Cost: 1) f7(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f7(ar_0, ar_1, ar_2, ar_3 + 1, f)) [ ar_2 >= ar_3 + 1 ] (Comp: ?, Cost: 1) f7(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f19(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_3 >= ar_2 ] (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f7(f, f, 10, 0, ar_4)) (Comp: ?, Cost: 1) f7(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f7(ar_0, ar_1, ar_2, ar_3 + 1, f)) [ ar_2 >= ar_3 + 1 ] (Comp: ?, Cost: 1) f7(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f19(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_3 >= ar_2 ] (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f0) = 1 Pol(f7) = 1 Pol(f19) = 0 Pol(koat_start) = 1 orients all transitions weakly and the transition f7(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f19(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_3 >= ar_2 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f7(f, f, 10, 0, ar_4)) (Comp: ?, Cost: 1) f7(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f7(ar_0, ar_1, ar_2, ar_3 + 1, f)) [ ar_2 >= ar_3 + 1 ] (Comp: 1, Cost: 1) f7(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f19(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_3 >= ar_2 ] (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f0) = 10 Pol(f7) = V_3 - V_4 Pol(f19) = V_3 - V_4 Pol(koat_start) = 10 orients all transitions weakly and the transition f7(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f7(ar_0, ar_1, ar_2, ar_3 + 1, f)) [ ar_2 >= ar_3 + 1 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) f0(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f7(f, f, 10, 0, ar_4)) (Comp: 10, Cost: 1) f7(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f7(ar_0, ar_1, ar_2, ar_3 + 1, f)) [ ar_2 >= ar_3 + 1 ] (Comp: 1, Cost: 1) f7(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f19(ar_0, ar_1, ar_2, ar_3, ar_4)) [ ar_3 >= ar_2 ] (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4) -> Com_1(f0(ar_0, ar_1, ar_2, ar_3, ar_4)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 12 Time: 0.056 sec (SMT: 0.052 sec) ---------------------------------------- (2) BOUNDS(1, 1)