/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(INF, INF). (0) CpxIntTrs (1) Loat Proof [FINISHED, 412 ms] (2) BOUNDS(INF, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f0(A, B, C, D, E, F, G) -> Com_1(f2(H, B, I, D, E, F, G)) :|: A >= B f0(A, B, C, D, E, F, G) -> Com_1(f0(H, B, C, I, 0, F, G)) :|: B >= A + 1 f0(A, B, C, D, E, F, G) -> Com_1(f0(H, B, C, I, J, K, G)) :|: 0 >= J + 1 && B >= A + 1 f0(A, B, C, D, E, F, G) -> Com_1(f0(H, B, C, I, J, K, G)) :|: J >= 1 && B >= A + 1 f1(A, B, C, D, E, F, G) -> Com_1(f0(A, B, C, D, E, F, H)) :|: TRUE The start-symbols are:[f1_7] ---------------------------------------- (1) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f1 0: f0 -> f2 : A'=free_1, C'=free, [ A>=B ], cost: 1 1: f0 -> f0 : A'=free_3, D'=free_2, E'=0, [ B>=1+A ], cost: 1 2: f0 -> f0 : A'=free_7, D'=free_4, E'=free_5, F'=free_6, [ 0>=1+free_5 && B>=1+A ], cost: 1 3: f0 -> f0 : A'=free_11, D'=free_8, E'=free_9, F'=free_10, [ free_9>=1 && B>=1+A ], cost: 1 4: f1 -> f0 : G'=free_12, [], cost: 1 Removed unreachable and leaf rules: Start location: f1 1: f0 -> f0 : A'=free_3, D'=free_2, E'=0, [ B>=1+A ], cost: 1 2: f0 -> f0 : A'=free_7, D'=free_4, E'=free_5, F'=free_6, [ 0>=1+free_5 && B>=1+A ], cost: 1 3: f0 -> f0 : A'=free_11, D'=free_8, E'=free_9, F'=free_10, [ free_9>=1 && B>=1+A ], cost: 1 4: f1 -> f0 : G'=free_12, [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 1: f0 -> f0 : A'=free_3, D'=free_2, E'=0, [ B>=1+A ], cost: 1 2: f0 -> f0 : A'=free_7, D'=free_4, E'=free_5, F'=free_6, [ 0>=1+free_5 && B>=1+A ], cost: 1 3: f0 -> f0 : A'=free_11, D'=free_8, E'=free_9, F'=free_10, [ free_9>=1 && B>=1+A ], cost: 1 Accelerated rule 1 with NONTERM (after strengthening guard), yielding the new rule 5. Accelerated rule 2 with NONTERM (after strengthening guard), yielding the new rule 6. Accelerated rule 3 with NONTERM (after strengthening guard), yielding the new rule 7. Removing the simple loops:. Accelerated all simple loops using metering functions (where possible): Start location: f1 1: f0 -> f0 : A'=free_3, D'=free_2, E'=0, [ B>=1+A ], cost: 1 2: f0 -> f0 : A'=free_7, D'=free_4, E'=free_5, F'=free_6, [ 0>=1+free_5 && B>=1+A ], cost: 1 3: f0 -> f0 : A'=free_11, D'=free_8, E'=free_9, F'=free_10, [ free_9>=1 && B>=1+A ], cost: 1 5: f0 -> [3] : [ B>=1+A && B>=1+free_3 ], cost: INF 6: f0 -> [3] : [ 0>=1+free_5 && B>=1+A && B>=1+free_7 ], cost: INF 7: f0 -> [3] : [ free_9>=1 && B>=1+A && B>=1+free_11 ], cost: INF 4: f1 -> f0 : G'=free_12, [], cost: 1 Chained accelerated rules (with incoming rules): Start location: f1 4: f1 -> f0 : G'=free_12, [], cost: 1 8: f1 -> f0 : A'=free_3, D'=free_2, E'=0, G'=free_12, [ B>=1+A ], cost: 2 9: f1 -> f0 : A'=free_7, D'=free_4, E'=free_5, F'=free_6, G'=free_12, [ 0>=1+free_5 && B>=1+A ], cost: 2 10: f1 -> f0 : A'=free_11, D'=free_8, E'=free_9, F'=free_10, G'=free_12, [ free_9>=1 && B>=1+A ], cost: 2 11: f1 -> [3] : G'=free_12, [ B>=1+A ], cost: INF 12: f1 -> [3] : G'=free_12, [ B>=1+A ], cost: INF 13: f1 -> [3] : G'=free_12, [ B>=1+A ], cost: INF Removed unreachable locations (and leaf rules with constant cost): Start location: f1 11: f1 -> [3] : G'=free_12, [ B>=1+A ], cost: INF 12: f1 -> [3] : G'=free_12, [ B>=1+A ], cost: INF 13: f1 -> [3] : G'=free_12, [ B>=1+A ], cost: INF ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f1 13: f1 -> [3] : G'=free_12, [ B>=1+A ], cost: INF Computing asymptotic complexity for rule 13 Resulting cost INF has complexity: Nonterm Found new complexity Nonterm. Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Nonterm Cpx degree: Nonterm Solved cost: INF Rule cost: INF Rule guard: [ B>=1+A ] NO ---------------------------------------- (2) BOUNDS(INF, INF)