/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 44 ms] (2) BOUNDS(1, n^1) (3) Loat Proof [FINISHED, 229 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f2(A, B, C, D, E, F) -> Com_1(f2(-(1) + A, -(1) + B, A, B, -(2) + A, F)) :|: A >= 1 && B >= 1 f3(A, B, C, D, E, F) -> Com_1(f2(A, B, C, D, E, F)) :|: TRUE f2(A, B, C, D, E, F) -> Com_1(f4(A, G, C, D, E, H)) :|: 0 >= B && 0 >= G f2(A, B, C, D, E, F) -> Com_1(f4(A, B, C, D, E, H)) :|: B >= 1 && 0 >= A The start-symbols are:[f3_6] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, ar_0 + 3) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f2(ar_0 - 1, ar_1 - 1, ar_0, ar_1, ar_0 - 2, ar_5)) [ ar_0 >= 1 /\ ar_1 >= 1 ] (Comp: ?, Cost: 1) f3(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) (Comp: ?, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f4(ar_0, g, ar_2, ar_3, ar_4, h)) [ 0 >= ar_1 /\ 0 >= g ] (Comp: ?, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f4(ar_0, ar_1, ar_2, ar_3, ar_4, g)) [ ar_1 >= 1 /\ 0 >= ar_0 ] (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f3(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: ?, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f2(ar_0 - 1, ar_1 - 1, ar_0, ar_1, ar_0 - 2, ar_5)) [ ar_0 >= 1 /\ ar_1 >= 1 ] (Comp: 1, Cost: 1) f3(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) (Comp: ?, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f4(ar_0, g, ar_2, ar_3, ar_4, h)) [ 0 >= ar_1 /\ 0 >= g ] (Comp: ?, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f4(ar_0, ar_1, ar_2, ar_3, ar_4, g)) [ ar_1 >= 1 /\ 0 >= ar_0 ] (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f3(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f2) = 1 Pol(f3) = 1 Pol(f4) = 0 Pol(koat_start) = 1 orients all transitions weakly and the transitions f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f4(ar_0, g, ar_2, ar_3, ar_4, h)) [ 0 >= ar_1 /\ 0 >= g ] f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f4(ar_0, ar_1, ar_2, ar_3, ar_4, g)) [ ar_1 >= 1 /\ 0 >= ar_0 ] strictly and produces the following problem: 3: T: (Comp: ?, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f2(ar_0 - 1, ar_1 - 1, ar_0, ar_1, ar_0 - 2, ar_5)) [ ar_0 >= 1 /\ ar_1 >= 1 ] (Comp: 1, Cost: 1) f3(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) (Comp: 1, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f4(ar_0, g, ar_2, ar_3, ar_4, h)) [ 0 >= ar_1 /\ 0 >= g ] (Comp: 1, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f4(ar_0, ar_1, ar_2, ar_3, ar_4, g)) [ ar_1 >= 1 /\ 0 >= ar_0 ] (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f3(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f2) = V_1 Pol(f3) = V_1 Pol(f4) = V_1 Pol(koat_start) = V_1 orients all transitions weakly and the transition f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f2(ar_0 - 1, ar_1 - 1, ar_0, ar_1, ar_0 - 2, ar_5)) [ ar_0 >= 1 /\ ar_1 >= 1 ] strictly and produces the following problem: 4: T: (Comp: ar_0, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f2(ar_0 - 1, ar_1 - 1, ar_0, ar_1, ar_0 - 2, ar_5)) [ ar_0 >= 1 /\ ar_1 >= 1 ] (Comp: 1, Cost: 1) f3(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) (Comp: 1, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f4(ar_0, g, ar_2, ar_3, ar_4, h)) [ 0 >= ar_1 /\ 0 >= g ] (Comp: 1, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f4(ar_0, ar_1, ar_2, ar_3, ar_4, g)) [ ar_1 >= 1 /\ 0 >= ar_0 ] (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(f3(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound ar_0 + 3 Time: 0.105 sec (SMT: 0.097 sec) ---------------------------------------- (2) BOUNDS(1, n^1) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f3 0: f2 -> f2 : A'=-1+A, B'=-1+B, C'=A, D'=B, E'=-2+A, [ A>=1 && B>=1 ], cost: 1 2: f2 -> f4 : B'=free, F'=free_1, [ 0>=B && 0>=free ], cost: 1 3: f2 -> f4 : F'=free_2, [ B>=1 && 0>=A ], cost: 1 1: f3 -> f2 : [], cost: 1 Removed unreachable and leaf rules: Start location: f3 0: f2 -> f2 : A'=-1+A, B'=-1+B, C'=A, D'=B, E'=-2+A, [ A>=1 && B>=1 ], cost: 1 1: f3 -> f2 : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 0: f2 -> f2 : A'=-1+A, B'=-1+B, C'=A, D'=B, E'=-2+A, [ A>=1 && B>=1 ], cost: 1 Accelerated rule 0 with metering function B (after adding A>=B), yielding the new rule 4. Accelerated rule 0 with metering function A (after adding A<=B), yielding the new rule 5. Removing the simple loops: 0. Accelerated all simple loops using metering functions (where possible): Start location: f3 4: f2 -> f2 : A'=A-B, B'=0, C'=1+A-B, D'=1, E'=-1+A-B, [ A>=1 && B>=1 && A>=B ], cost: B 5: f2 -> f2 : A'=0, B'=-A+B, C'=1, D'=1-A+B, E'=-1, [ A>=1 && B>=1 && A<=B ], cost: A 1: f3 -> f2 : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: f3 1: f3 -> f2 : [], cost: 1 6: f3 -> f2 : A'=A-B, B'=0, C'=1+A-B, D'=1, E'=-1+A-B, [ A>=1 && B>=1 && A>=B ], cost: 1+B 7: f3 -> f2 : A'=0, B'=-A+B, C'=1, D'=1-A+B, E'=-1, [ A>=1 && B>=1 && A<=B ], cost: 1+A Removed unreachable locations (and leaf rules with constant cost): Start location: f3 6: f3 -> f2 : A'=A-B, B'=0, C'=1+A-B, D'=1, E'=-1+A-B, [ A>=1 && B>=1 && A>=B ], cost: 1+B 7: f3 -> f2 : A'=0, B'=-A+B, C'=1, D'=1-A+B, E'=-1, [ A>=1 && B>=1 && A<=B ], cost: 1+A ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f3 6: f3 -> f2 : A'=A-B, B'=0, C'=1+A-B, D'=1, E'=-1+A-B, [ A>=1 && B>=1 && A>=B ], cost: 1+B 7: f3 -> f2 : A'=0, B'=-A+B, C'=1, D'=1-A+B, E'=-1, [ A>=1 && B>=1 && A<=B ], cost: 1+A Computing asymptotic complexity for rule 6 Simplified the guard: 6: f3 -> f2 : A'=A-B, B'=0, C'=1+A-B, D'=1, E'=-1+A-B, [ B>=1 && A>=B ], cost: 1+B Solved the limit problem by the following transformations: Created initial limit problem: 1+B (+), 1+A-B (+/+!), B (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==n,B==n} resulting limit problem: [solved] Solution: A / n B / n Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1+B Rule guard: [ B>=1 && A>=B ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)