/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, 1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 28 ms] (2) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f2(A, B, C, D) -> Com_1(f2(1 + A, 1 + B, -(1) + C, D)) :|: TRUE f1(A, B, C, D) -> Com_1(f2(A, B, C, D)) :|: A >= C && B >= 1 + A && C >= 1 + B f1(A, B, C, D) -> Com_1(f300(A, B, C, E)) :|: C >= 1 + B && B >= 1 + A && C >= 1 + A f1(A, B, C, D) -> Com_1(f300(A, B, C, E)) :|: B >= 1 + A && B >= C f1(A, B, C, D) -> Com_1(f300(A, B, C, E)) :|: A >= B The start-symbols are:[f1_4] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 3) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) f2(ar_0, ar_1, ar_2, ar_3) -> Com_1(f2(ar_0 + 1, ar_1 + 1, ar_2 - 1, ar_3)) (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f2(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_2 /\ ar_1 >= ar_0 + 1 /\ ar_2 >= ar_1 + 1 ] (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f300(ar_0, ar_1, ar_2, e)) [ ar_2 >= ar_1 + 1 /\ ar_1 >= ar_0 + 1 /\ ar_2 >= ar_0 + 1 ] (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f300(ar_0, ar_1, ar_2, e)) [ ar_1 >= ar_0 + 1 /\ ar_1 >= ar_2 ] (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f300(ar_0, ar_1, ar_2, e)) [ ar_0 >= ar_1 ] (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Testing for reachability in the complexity graph removes the following transitions from problem 1: f2(ar_0, ar_1, ar_2, ar_3) -> Com_1(f2(ar_0 + 1, ar_1 + 1, ar_2 - 1, ar_3)) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f2(ar_0, ar_1, ar_2, ar_3)) [ ar_0 >= ar_2 /\ ar_1 >= ar_0 + 1 /\ ar_2 >= ar_1 + 1 ] We thus obtain the following problem: 2: T: (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f300(ar_0, ar_1, ar_2, e)) [ ar_0 >= ar_1 ] (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f300(ar_0, ar_1, ar_2, e)) [ ar_1 >= ar_0 + 1 /\ ar_1 >= ar_2 ] (Comp: ?, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f300(ar_0, ar_1, ar_2, e)) [ ar_2 >= ar_1 + 1 /\ ar_1 >= ar_0 + 1 /\ ar_2 >= ar_0 + 1 ] (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 2 produces the following problem: 3: T: (Comp: 1, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f300(ar_0, ar_1, ar_2, e)) [ ar_0 >= ar_1 ] (Comp: 1, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f300(ar_0, ar_1, ar_2, e)) [ ar_1 >= ar_0 + 1 /\ ar_1 >= ar_2 ] (Comp: 1, Cost: 1) f1(ar_0, ar_1, ar_2, ar_3) -> Com_1(f300(ar_0, ar_1, ar_2, e)) [ ar_2 >= ar_1 + 1 /\ ar_1 >= ar_0 + 1 /\ ar_2 >= ar_0 + 1 ] (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3) -> Com_1(f1(ar_0, ar_1, ar_2, ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 3 Time: 0.023 sec (SMT: 0.021 sec) ---------------------------------------- (2) BOUNDS(1, 1)