/export/starexec/sandbox2/solver/bin/starexec_run_C /export/starexec/sandbox2/benchmark/theBenchmark.c /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?,O(n^2)) Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive : [eval_jama_ex7_bb2_in/3,eval_jama_ex7_bb3_in/3] 1. recursive : [eval_jama_ex7_bb1_in/3,eval_jama_ex7_bb2_in_loop_cont/5,eval_jama_ex7_bb4_in/4] 2. non_recursive : [eval_jama_ex7_stop/1] 3. non_recursive : [eval_jama_ex7_bb5_in/1] 4. non_recursive : [eval_jama_ex7_bb1_in_loop_cont/2] 5. non_recursive : [eval_jama_ex7_bb0_in/3] 6. non_recursive : [eval_jama_ex7_start/3] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into eval_jama_ex7_bb2_in/3 1. SCC is partially evaluated into eval_jama_ex7_bb1_in/3 2. SCC is completely evaluated into other SCCs 3. SCC is completely evaluated into other SCCs 4. SCC is completely evaluated into other SCCs 5. SCC is partially evaluated into eval_jama_ex7_bb0_in/3 6. SCC is partially evaluated into eval_jama_ex7_start/3 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations eval_jama_ex7_bb2_in/3 * CE 6 is refined into CE [7] * CE 5 is refined into CE [8] ### Cost equations --> "Loop" of eval_jama_ex7_bb2_in/3 * CEs [8] --> Loop 7 * CEs [7] --> Loop 8 ### Ranking functions of CR eval_jama_ex7_bb2_in(V_j_0,B,C) * RF of phase [7]: [V_j_0] #### Partial ranking functions of CR eval_jama_ex7_bb2_in(V_j_0,B,C) * Partial RF of phase [7]: - RF of loop [7:1]: V_j_0 ### Specialization of cost equations eval_jama_ex7_bb1_in/3 * CE 4 is refined into CE [9] * CE 3 is refined into CE [10,11] ### Cost equations --> "Loop" of eval_jama_ex7_bb1_in/3 * CEs [10] --> Loop 9 * CEs [11] --> Loop 10 * CEs [9] --> Loop 11 ### Ranking functions of CR eval_jama_ex7_bb1_in(V_m,V_i_0,B) * RF of phase [9]: [V_i_0] * RF of phase [10]: [V_i_0] #### Partial ranking functions of CR eval_jama_ex7_bb1_in(V_m,V_i_0,B) * Partial RF of phase [9]: - RF of loop [9:1]: V_i_0 * Partial RF of phase [10]: - RF of loop [10:1]: V_i_0 ### Specialization of cost equations eval_jama_ex7_bb0_in/3 * CE 2 is refined into CE [12,13,14] ### Cost equations --> "Loop" of eval_jama_ex7_bb0_in/3 * CEs [14] --> Loop 12 * CEs [12] --> Loop 13 * CEs [13] --> Loop 14 ### Ranking functions of CR eval_jama_ex7_bb0_in(V_n,V_m,B) #### Partial ranking functions of CR eval_jama_ex7_bb0_in(V_n,V_m,B) ### Specialization of cost equations eval_jama_ex7_start/3 * CE 1 is refined into CE [15,16,17] ### Cost equations --> "Loop" of eval_jama_ex7_start/3 * CEs [17] --> Loop 15 * CEs [16] --> Loop 16 * CEs [15] --> Loop 17 ### Ranking functions of CR eval_jama_ex7_start(V_n,V_m,B) #### Partial ranking functions of CR eval_jama_ex7_start(V_n,V_m,B) Computing Bounds ===================================== #### Cost of chains of eval_jama_ex7_bb2_in(V_j_0,B,C): * Chain [[7],8]: 1*it(7)+0 Such that:it(7) =< V_j_0 with precondition: [B=2,C=0,V_j_0>=1] * Chain [8]: 0 with precondition: [B=2,V_j_0=C,0>=V_j_0] #### Cost of chains of eval_jama_ex7_bb1_in(V_m,V_i_0,B): * Chain [[10],11]: 1*it(10)+0 Such that:it(10) =< V_i_0 with precondition: [B=3,0>=V_m,V_i_0>=1] * Chain [[9],11]: 1*it(9)+1*s(3)+0 Such that:aux(1) =< V_m it(9) =< V_i_0 s(3) =< it(9)*aux(1) with precondition: [B=3,V_m>=1,V_i_0>=1] * Chain [11]: 0 with precondition: [B=3,0>=V_i_0] #### Cost of chains of eval_jama_ex7_bb0_in(V_n,V_m,B): * Chain [14]: 0 with precondition: [0>=V_n] * Chain [13]: 1*s(4)+0 Such that:s(4) =< V_n with precondition: [0>=V_m,V_n>=1] * Chain [12]: 1*s(6)+1*s(7)+0 Such that:s(6) =< V_n s(5) =< V_m s(7) =< s(6)*s(5) with precondition: [V_n>=1,V_m>=1] #### Cost of chains of eval_jama_ex7_start(V_n,V_m,B): * Chain [17]: 0 with precondition: [0>=V_n] * Chain [16]: 1*s(8)+0 Such that:s(8) =< V_n with precondition: [0>=V_m,V_n>=1] * Chain [15]: 1*s(9)+1*s(11)+0 Such that:s(9) =< V_n s(10) =< V_m s(11) =< s(9)*s(10) with precondition: [V_n>=1,V_m>=1] Closed-form bounds of eval_jama_ex7_start(V_n,V_m,B): ------------------------------------- * Chain [17] with precondition: [0>=V_n] - Upper bound: 0 - Complexity: constant * Chain [16] with precondition: [0>=V_m,V_n>=1] - Upper bound: V_n - Complexity: n * Chain [15] with precondition: [V_n>=1,V_m>=1] - Upper bound: V_m*V_n+V_n - Complexity: n^2 ### Maximum cost of eval_jama_ex7_start(V_n,V_m,B): nat(V_m)*nat(V_n)+nat(V_n) Asymptotic class: n^2 * Total analysis performed in 97 ms.