/export/starexec/sandbox2/solver/bin/starexec_run_C /export/starexec/sandbox2/benchmark/theBenchmark.c /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?,O(n^2)) Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive : [eval_load_mems_2/3,eval_load_mems_3/4,eval_load_mems_bb4_in/3,eval_load_mems_bb5_in/3,eval_load_mems_bb6_in/4] 1. recursive : [eval_load_mems_0/5,eval_load_mems_1/6,eval_load_mems_bb2_in/5,eval_load_mems_bb3_in/5,eval_load_mems_bb4_in_loop_cont/8,eval_load_mems_bb7_in/7] 2. recursive : [eval_load_mems_bb1_in/4,eval_load_mems_bb2_in_loop_cont/7,eval_load_mems_bb8_in/6] 3. non_recursive : [eval_load_mems_stop/1] 4. non_recursive : [eval_load_mems_bb9_in/1] 5. non_recursive : [eval_load_mems_bb1_in_loop_cont/2] 6. non_recursive : [eval_load_mems_bb0_in/4] 7. non_recursive : [eval_load_mems_start/4] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into eval_load_mems_bb4_in/3 1. SCC is partially evaluated into eval_load_mems_bb2_in/5 2. SCC is partially evaluated into eval_load_mems_bb1_in/4 3. SCC is completely evaluated into other SCCs 4. SCC is completely evaluated into other SCCs 5. SCC is completely evaluated into other SCCs 6. SCC is partially evaluated into eval_load_mems_bb0_in/4 7. SCC is partially evaluated into eval_load_mems_start/4 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations eval_load_mems_bb4_in/3 * CE 10 is refined into CE [11] * CE 8 is refined into CE [12] * CE 9 is refined into CE [13] ### Cost equations --> "Loop" of eval_load_mems_bb4_in/3 * CEs [13] --> Loop 10 * CEs [11] --> Loop 11 * CEs [12] --> Loop 12 ### Ranking functions of CR eval_load_mems_bb4_in(V__2,B,C) * RF of phase [10]: [-V__2+64] #### Partial ranking functions of CR eval_load_mems_bb4_in(V__2,B,C) * Partial RF of phase [10]: - RF of loop [10:1]: -V__2+64 ### Specialization of cost equations eval_load_mems_bb2_in/5 * CE 7 is refined into CE [14] * CE 5 is refined into CE [15] * CE 6 is refined into CE [16,17,18,19] ### Cost equations --> "Loop" of eval_load_mems_bb2_in/5 * CEs [18] --> Loop 13 * CEs [15] --> Loop 14 * CEs [19] --> Loop 15 * CEs [16,17] --> Loop 16 * CEs [14] --> Loop 17 ### Ranking functions of CR eval_load_mems_bb2_in(V__13,V__1,B,C,D) * RF of phase [14,15,16]: [-V__1+2] #### Partial ranking functions of CR eval_load_mems_bb2_in(V__13,V__1,B,C,D) * Partial RF of phase [14,15,16]: - RF of loop [14:1,15:1,16:1]: -V__1+2 ### Specialization of cost equations eval_load_mems_bb1_in/4 * CE 4 is refined into CE [20] * CE 3 is refined into CE [21,22,23,24] ### Cost equations --> "Loop" of eval_load_mems_bb1_in/4 * CEs [24] --> Loop 18 * CEs [23] --> Loop 19 * CEs [22] --> Loop 20 * CEs [21] --> Loop 21 * CEs [20] --> Loop 22 ### Ranking functions of CR eval_load_mems_bb1_in(V__02,V__01,V__0,B) * RF of phase [20]: [V__0] #### Partial ranking functions of CR eval_load_mems_bb1_in(V__02,V__01,V__0,B) * Partial RF of phase [20]: - RF of loop [20:1]: V__0 ### Specialization of cost equations eval_load_mems_bb0_in/4 * CE 2 is refined into CE [25,26,27,28,29,30,31,32,33,34] ### Cost equations --> "Loop" of eval_load_mems_bb0_in/4 * CEs [33] --> Loop 23 * CEs [34] --> Loop 24 * CEs [31] --> Loop 25 * CEs [30] --> Loop 26 * CEs [32] --> Loop 27 * CEs [26] --> Loop 28 * CEs [29] --> Loop 29 * CEs [28] --> Loop 30 * CEs [27] --> Loop 31 * CEs [25] --> Loop 32 ### Ranking functions of CR eval_load_mems_bb0_in(V_ptr,V_word_num_,V_bit_num_,B) #### Partial ranking functions of CR eval_load_mems_bb0_in(V_ptr,V_word_num_,V_bit_num_,B) ### Specialization of cost equations eval_load_mems_start/4 * CE 1 is refined into CE [35,36,37,38,39,40,41,42,43,44] ### Cost equations --> "Loop" of eval_load_mems_start/4 * CEs [44] --> Loop 33 * CEs [43] --> Loop 34 * CEs [42] --> Loop 35 * CEs [41] --> Loop 36 * CEs [40] --> Loop 37 * CEs [39] --> Loop 38 * CEs [38] --> Loop 39 * CEs [37] --> Loop 40 * CEs [36] --> Loop 41 * CEs [35] --> Loop 42 ### Ranking functions of CR eval_load_mems_start(V_ptr,V_word_num_,V_bit_num_,B) #### Partial ranking functions of CR eval_load_mems_start(V_ptr,V_word_num_,V_bit_num_,B) Computing Bounds ===================================== #### Cost of chains of eval_load_mems_bb4_in(V__2,B,C): * Chain [[10],12]: 1*it(10)+0 Such that:it(10) =< -V__2+C with precondition: [B=2,63>=C,C>=V__2+1] * Chain [[10],11]: 1*it(10)+0 Such that:it(10) =< -V__2+64 with precondition: [B=2,C=64,63>=V__2] * Chain [12]: 0 with precondition: [B=2,V__2=C,63>=V__2] * Chain [11]: 0 with precondition: [B=2,V__2=C,V__2>=64] #### Cost of chains of eval_load_mems_bb2_in(V__13,V__1,B,C,D): * Chain [[14,15,16],17]: 3*it(14)+1*s(5)+1*s(6)+0 Such that:aux(5) =< 63 aux(4) =< -V__13+63 aux(8) =< -V__13-64*V__1+128 aux(2) =< -V__13-63*V__1+126 aux(6) =< -63*V__1+63 aux(13) =< -V__1+2 it(14) =< aux(13) aux(3) =< max([aux(4),aux(5)])+it(14)*62+it(14)*63 aux(1) =< it(14)*aux(6) aux(9) =< aux(3)+1 aux(7) =< aux(1)*(64/63) s(5) =< aux(1)+aux(2) s(5) =< it(14)*aux(3) s(6) =< aux(7)+aux(8) s(6) =< it(14)*aux(9) with precondition: [B=3,C=0,D=2,1>=V__1] * Chain [17]: 0 with precondition: [B=3,C=V__13,V__1=D,V__1>=2] * Chain [13,[14,15,16],17]: 3*it(14)+1*s(5)+1*s(6)+1 Such that:aux(8) =< -64*V__1+64 aux(6) =< -63*V__1 aux(2) =< -63*V__1+63 aux(13) =< -V__1+1 aux(14) =< 63 it(14) =< aux(13) aux(3) =< max([aux(14),aux(14)])+it(14)*62+it(14)*63 aux(1) =< it(14)*aux(6) aux(9) =< aux(3)+1 aux(7) =< aux(1)*(64/63) s(5) =< aux(1)+aux(2) s(5) =< it(14)*aux(3) s(6) =< aux(7)+aux(8) s(6) =< it(14)*aux(9) with precondition: [B=3,C=0,D=2,0>=V__1,V__13>=64] * Chain [13,17]: 1 with precondition: [V__1=1,B=3,C=0,D=2,V__13>=64] #### Cost of chains of eval_load_mems_bb1_in(V__02,V__01,V__0,B): * Chain [[20],22]: 1*it(20)+3*s(33)+1*s(34)+1*s(35)+0 Such that:aux(23) =< 63 aux(22) =< 126 aux(19) =< 128 aux(15) =< -V__02+63 aux(18) =< -V__02-64*V__01+128 aux(21) =< -V__02-63*V__01+126 s(24) =< -63*V__01+126 s(24) =< -63*V__01+63*V__0 s(40) =< -V__01+2*V__0 it(20) =< V__0 aux(20) =< max([aux(21),aux(22)]) aux(17) =< max([aux(18),aux(19)]) s(25) =< s(24)*(1/63)+1 s(21) =< max([aux(15),aux(23)]) s(38) =< it(20)*aux(20) s(36) =< it(20)*aux(17) s(33) =< s(40) s(27) =< max([s(21),aux(23)])+s(25)*62+s(25)*63 s(39) =< s(33)*s(24) s(29) =< s(27)+1 s(37) =< s(39)*(64/63) s(34) =< s(39)+s(38) s(34) =< s(33)*s(27) s(35) =< s(37)+s(36) s(35) =< s(33)*s(29) with precondition: [B=4,1>=V__01,V__0>=1] * Chain [22]: 0 with precondition: [B=4,0>=V__0] * Chain [21,[20],22]: 1*it(20)+3*s(33)+1*s(34)+1*s(35)+2 Such that:it(20) =< V__0 s(40) =< 2*V__0 s(24) =< 63*V__0 aux(24) =< 63 aux(25) =< 126 aux(26) =< 128 s(24) =< aux(25) aux(20) =< max([aux(25),aux(25)]) aux(17) =< max([aux(26),aux(26)]) s(25) =< s(24)*(1/63)+1 s(21) =< max([aux(24),aux(24)]) s(38) =< it(20)*aux(20) s(36) =< it(20)*aux(17) s(33) =< s(40) s(27) =< max([s(21),aux(24)])+s(25)*62+s(25)*63 s(39) =< s(33)*s(24) s(29) =< s(27)+1 s(37) =< s(39)*(64/63) s(34) =< s(39)+s(38) s(34) =< s(33)*s(27) s(35) =< s(37)+s(36) s(35) =< s(33)*s(29) with precondition: [V__01=1,B=4,V__02>=64,V__0>=2] * Chain [21,22]: 2 with precondition: [V__01=1,V__0=1,B=4,V__02>=64] * Chain [19,[20],22]: 1*it(20)+3*s(33)+1*s(34)+1*s(35)+3*s(46)+1*s(51)+1*s(52)+2 Such that:s(41) =< -64*V__01+64 s(42) =< -63*V__01 s(43) =< -63*V__01+63 s(44) =< -V__01+1 it(20) =< V__0 s(40) =< 2*V__0 s(24) =< 63*V__0 aux(27) =< 63 aux(28) =< 126 aux(29) =< 128 s(24) =< aux(28) aux(20) =< max([aux(28),aux(28)]) aux(17) =< max([aux(29),aux(29)]) s(25) =< s(24)*(1/63)+1 s(21) =< max([aux(27),aux(27)]) s(38) =< it(20)*aux(20) s(36) =< it(20)*aux(17) s(33) =< s(40) s(27) =< max([s(21),aux(27)])+s(25)*62+s(25)*63 s(39) =< s(33)*s(24) s(29) =< s(27)+1 s(37) =< s(39)*(64/63) s(34) =< s(39)+s(38) s(34) =< s(33)*s(27) s(35) =< s(37)+s(36) s(35) =< s(33)*s(29) s(46) =< s(44) s(47) =< max([aux(27),aux(27)])+s(46)*62+s(46)*63 s(48) =< s(46)*s(42) s(49) =< s(47)+1 s(50) =< s(48)*(64/63) s(51) =< s(48)+s(43) s(51) =< s(46)*s(47) s(52) =< s(50)+s(41) s(52) =< s(46)*s(49) with precondition: [B=4,0>=V__01,V__02>=64,V__0>=2] * Chain [19,22]: 3*s(46)+1*s(51)+1*s(52)+2 Such that:s(45) =< 63 s(41) =< -64*V__01+64 s(42) =< -63*V__01 s(43) =< -63*V__01+63 s(44) =< -V__01+1 s(46) =< s(44) s(47) =< max([s(45),s(45)])+s(46)*62+s(46)*63 s(48) =< s(46)*s(42) s(49) =< s(47)+1 s(50) =< s(48)*(64/63) s(51) =< s(48)+s(43) s(51) =< s(46)*s(47) s(52) =< s(50)+s(41) s(52) =< s(46)*s(49) with precondition: [V__0=1,B=4,0>=V__01,V__02>=64] * Chain [18,[20],22]: 1*it(20)+3*s(33)+1*s(34)+1*s(35)+1 Such that:aux(23) =< 63 aux(19) =< 128 aux(15) =< -V__02+63 aux(21) =< -V__02+126 aux(18) =< -V__02+128 it(20) =< V__0 s(40) =< 2*V__0 s(24) =< 63*V__0 aux(30) =< 126 s(24) =< aux(30) aux(20) =< max([aux(21),aux(30)]) aux(17) =< max([aux(18),aux(19)]) s(25) =< s(24)*(1/63)+1 s(21) =< max([aux(15),aux(23)]) s(38) =< it(20)*aux(20) s(36) =< it(20)*aux(17) s(33) =< s(40) s(27) =< max([s(21),aux(23)])+s(25)*62+s(25)*63 s(39) =< s(33)*s(24) s(29) =< s(27)+1 s(37) =< s(39)*(64/63) s(34) =< s(39)+s(38) s(34) =< s(33)*s(27) s(35) =< s(37)+s(36) s(35) =< s(33)*s(29) with precondition: [B=4,V__01>=2,V__0>=2] * Chain [18,22]: 1 with precondition: [V__0=1,B=4,V__01>=2] * Chain [18,19,[20],22]: 1*it(20)+3*s(33)+1*s(34)+1*s(35)+3*s(46)+1*s(51)+1*s(52)+3 Such that:s(44) =< 1 s(41) =< 64 aux(28) =< 126 aux(29) =< 128 it(20) =< V__0 s(40) =< 2*V__0 s(24) =< 63*V__0 aux(31) =< 63 s(24) =< aux(28) aux(20) =< max([aux(28),aux(28)]) aux(17) =< max([aux(29),aux(29)]) s(25) =< s(24)*(1/63)+1 s(21) =< max([aux(31),aux(31)]) s(38) =< it(20)*aux(20) s(36) =< it(20)*aux(17) s(33) =< s(40) s(27) =< max([s(21),aux(31)])+s(25)*62+s(25)*63 s(39) =< s(33)*s(24) s(29) =< s(27)+1 s(37) =< s(39)*(64/63) s(34) =< s(39)+s(38) s(34) =< s(33)*s(27) s(35) =< s(37)+s(36) s(35) =< s(33)*s(29) s(46) =< s(44) s(47) =< max([aux(31),aux(31)])+s(46)*62+s(46)*63 s(49) =< s(47)+1 s(51) =< aux(31) s(51) =< s(46)*s(47) s(52) =< s(41) s(52) =< s(46)*s(49) with precondition: [B=4,V__02>=64,V__01>=2,V__0>=3] * Chain [18,19,22]: 3*s(46)+1*s(51)+1*s(52)+3 Such that:s(44) =< 1 s(41) =< 64 aux(32) =< 63 s(46) =< s(44) s(47) =< max([aux(32),aux(32)])+s(46)*62+s(46)*63 s(49) =< s(47)+1 s(51) =< aux(32) s(51) =< s(46)*s(47) s(52) =< s(41) s(52) =< s(46)*s(49) with precondition: [V__0=2,B=4,V__02>=64,V__01>=2] #### Cost of chains of eval_load_mems_bb0_in(V_ptr,V_word_num_,V_bit_num_,B): * Chain [32]: 2 with precondition: [V_ptr=1,V_word_num_=1,V_bit_num_>=64] * Chain [31]: 3*s(58)+1*s(63)+1*s(64)+2 Such that:s(53) =< 63 s(54) =< -64*V_word_num_+64 s(55) =< -63*V_word_num_ s(56) =< -63*V_word_num_+63 s(57) =< -V_word_num_+1 s(58) =< s(57) s(59) =< max([s(53),s(53)])+s(58)*62+s(58)*63 s(60) =< s(58)*s(55) s(61) =< s(59)+1 s(62) =< s(60)*(64/63) s(63) =< s(60)+s(56) s(63) =< s(58)*s(59) s(64) =< s(62)+s(54) s(64) =< s(58)*s(61) with precondition: [V_ptr=1,0>=V_word_num_,V_bit_num_>=64] * Chain [30]: 1 with precondition: [V_ptr=1,V_word_num_>=2] * Chain [29]: 3*s(68)+1*s(71)+1*s(72)+3 Such that:s(65) =< 1 s(67) =< 63 s(66) =< 64 s(68) =< s(65) s(69) =< max([s(67),s(67)])+s(68)*62+s(68)*63 s(70) =< s(69)+1 s(71) =< s(67) s(71) =< s(68)*s(69) s(72) =< s(66) s(72) =< s(68)*s(70) with precondition: [V_ptr=2,V_word_num_>=2,V_bit_num_>=64] * Chain [28]: 1*s(73)+3*s(85)+1*s(90)+1*s(91)+2 Such that:s(76) =< 63 s(77) =< 126 s(78) =< 128 s(73) =< V_ptr s(74) =< 2*V_ptr s(75) =< 63*V_ptr s(75) =< s(77) s(79) =< max([s(77),s(77)]) s(80) =< max([s(78),s(78)]) s(81) =< s(75)*(1/63)+1 s(82) =< max([s(76),s(76)]) s(83) =< s(73)*s(79) s(84) =< s(73)*s(80) s(85) =< s(74) s(86) =< max([s(82),s(76)])+s(81)*62+s(81)*63 s(87) =< s(85)*s(75) s(88) =< s(86)+1 s(89) =< s(87)*(64/63) s(90) =< s(87)+s(83) s(90) =< s(85)*s(86) s(91) =< s(89)+s(84) s(91) =< s(85)*s(88) with precondition: [V_word_num_=1,V_ptr>=2,V_bit_num_>=64] * Chain [27]: 0 with precondition: [0>=V_ptr] * Chain [26]: 1*s(100)+3*s(107)+1*s(112)+1*s(113)+0 Such that:s(92) =< 63 s(93) =< 126 s(94) =< 128 s(100) =< V_ptr s(99) =< 2*V_ptr-V_word_num_ s(98) =< 63*V_ptr-63*V_word_num_ s(96) =< -64*V_word_num_-V_bit_num_+128 s(98) =< -63*V_word_num_+126 s(97) =< -63*V_word_num_-V_bit_num_+126 s(95) =< -V_bit_num_+63 s(101) =< max([s(97),s(93)]) s(102) =< max([s(96),s(94)]) s(103) =< s(98)*(1/63)+1 s(104) =< max([s(95),s(92)]) s(105) =< s(100)*s(101) s(106) =< s(100)*s(102) s(107) =< s(99) s(108) =< max([s(104),s(92)])+s(103)*62+s(103)*63 s(109) =< s(107)*s(98) s(110) =< s(108)+1 s(111) =< s(109)*(64/63) s(112) =< s(109)+s(105) s(112) =< s(107)*s(108) s(113) =< s(111)+s(106) s(113) =< s(107)*s(110) with precondition: [1>=V_word_num_,V_ptr>=1] * Chain [25]: 1*s(118)+3*s(130)+1*s(135)+1*s(136)+3*s(137)+1*s(142)+1*s(143)+2 Such that:s(121) =< 63 s(122) =< 126 s(123) =< 128 s(118) =< V_ptr s(119) =< 2*V_ptr s(120) =< 63*V_ptr s(114) =< -64*V_word_num_+64 s(115) =< -63*V_word_num_ s(116) =< -63*V_word_num_+63 s(117) =< -V_word_num_+1 s(120) =< s(122) s(124) =< max([s(122),s(122)]) s(125) =< max([s(123),s(123)]) s(126) =< s(120)*(1/63)+1 s(127) =< max([s(121),s(121)]) s(128) =< s(118)*s(124) s(129) =< s(118)*s(125) s(130) =< s(119) s(131) =< max([s(127),s(121)])+s(126)*62+s(126)*63 s(132) =< s(130)*s(120) s(133) =< s(131)+1 s(134) =< s(132)*(64/63) s(135) =< s(132)+s(128) s(135) =< s(130)*s(131) s(136) =< s(134)+s(129) s(136) =< s(130)*s(133) s(137) =< s(117) s(138) =< max([s(121),s(121)])+s(137)*62+s(137)*63 s(139) =< s(137)*s(115) s(140) =< s(138)+1 s(141) =< s(139)*(64/63) s(142) =< s(139)+s(116) s(142) =< s(137)*s(138) s(143) =< s(141)+s(114) s(143) =< s(137)*s(140) with precondition: [0>=V_word_num_,V_ptr>=2,V_bit_num_>=64] * Chain [24]: 1*s(149)+3*s(159)+1*s(164)+1*s(165)+1 Such that:s(144) =< 63 s(152) =< 126 s(145) =< 128 s(149) =< V_ptr s(150) =< 2*V_ptr s(151) =< 63*V_ptr s(146) =< -V_bit_num_+63 s(147) =< -V_bit_num_+126 s(148) =< -V_bit_num_+128 s(151) =< s(152) s(153) =< max([s(147),s(152)]) s(154) =< max([s(148),s(145)]) s(155) =< s(151)*(1/63)+1 s(156) =< max([s(146),s(144)]) s(157) =< s(149)*s(153) s(158) =< s(149)*s(154) s(159) =< s(150) s(160) =< max([s(156),s(144)])+s(155)*62+s(155)*63 s(161) =< s(159)*s(151) s(162) =< s(160)+1 s(163) =< s(161)*(64/63) s(164) =< s(161)+s(157) s(164) =< s(159)*s(160) s(165) =< s(163)+s(158) s(165) =< s(159)*s(162) with precondition: [V_ptr>=2,V_word_num_>=2] * Chain [23]: 1*s(170)+3*s(180)+1*s(185)+1*s(186)+3*s(187)+1*s(190)+1*s(191)+3 Such that:s(166) =< 1 s(173) =< 63 s(167) =< 64 s(168) =< 126 s(169) =< 128 s(170) =< V_ptr s(171) =< 2*V_ptr s(172) =< 63*V_ptr s(172) =< s(168) s(174) =< max([s(168),s(168)]) s(175) =< max([s(169),s(169)]) s(176) =< s(172)*(1/63)+1 s(177) =< max([s(173),s(173)]) s(178) =< s(170)*s(174) s(179) =< s(170)*s(175) s(180) =< s(171) s(181) =< max([s(177),s(173)])+s(176)*62+s(176)*63 s(182) =< s(180)*s(172) s(183) =< s(181)+1 s(184) =< s(182)*(64/63) s(185) =< s(182)+s(178) s(185) =< s(180)*s(181) s(186) =< s(184)+s(179) s(186) =< s(180)*s(183) s(187) =< s(166) s(188) =< max([s(173),s(173)])+s(187)*62+s(187)*63 s(189) =< s(188)+1 s(190) =< s(173) s(190) =< s(187)*s(188) s(191) =< s(167) s(191) =< s(187)*s(189) with precondition: [V_ptr>=3,V_word_num_>=2,V_bit_num_>=64] #### Cost of chains of eval_load_mems_start(V_ptr,V_word_num_,V_bit_num_,B): * Chain [42]: 2 with precondition: [V_ptr=1,V_word_num_=1,V_bit_num_>=64] * Chain [41]: 3*s(197)+1*s(202)+1*s(203)+2 Such that:s(192) =< 63 s(193) =< -64*V_word_num_+64 s(194) =< -63*V_word_num_ s(195) =< -63*V_word_num_+63 s(196) =< -V_word_num_+1 s(197) =< s(196) s(198) =< max([s(192),s(192)])+s(197)*62+s(197)*63 s(199) =< s(197)*s(194) s(200) =< s(198)+1 s(201) =< s(199)*(64/63) s(202) =< s(199)+s(195) s(202) =< s(197)*s(198) s(203) =< s(201)+s(193) s(203) =< s(197)*s(200) with precondition: [V_ptr=1,0>=V_word_num_,V_bit_num_>=64] * Chain [40]: 1 with precondition: [V_ptr=1,V_word_num_>=2] * Chain [39]: 3*s(207)+1*s(210)+1*s(211)+3 Such that:s(204) =< 1 s(205) =< 63 s(206) =< 64 s(207) =< s(204) s(208) =< max([s(205),s(205)])+s(207)*62+s(207)*63 s(209) =< s(208)+1 s(210) =< s(205) s(210) =< s(207)*s(208) s(211) =< s(206) s(211) =< s(207)*s(209) with precondition: [V_ptr=2,V_word_num_>=2,V_bit_num_>=64] * Chain [38]: 1*s(215)+3*s(224)+1*s(229)+1*s(230)+2 Such that:s(212) =< 63 s(213) =< 126 s(214) =< 128 s(215) =< V_ptr s(216) =< 2*V_ptr s(217) =< 63*V_ptr s(217) =< s(213) s(218) =< max([s(213),s(213)]) s(219) =< max([s(214),s(214)]) s(220) =< s(217)*(1/63)+1 s(221) =< max([s(212),s(212)]) s(222) =< s(215)*s(218) s(223) =< s(215)*s(219) s(224) =< s(216) s(225) =< max([s(221),s(212)])+s(220)*62+s(220)*63 s(226) =< s(224)*s(217) s(227) =< s(225)+1 s(228) =< s(226)*(64/63) s(229) =< s(226)+s(222) s(229) =< s(224)*s(225) s(230) =< s(228)+s(223) s(230) =< s(224)*s(227) with precondition: [V_word_num_=1,V_ptr>=2,V_bit_num_>=64] * Chain [37]: 0 with precondition: [0>=V_ptr] * Chain [36]: 1*s(234)+3*s(246)+1*s(251)+1*s(252)+0 Such that:s(231) =< 63 s(232) =< 126 s(233) =< 128 s(234) =< V_ptr s(235) =< 2*V_ptr-V_word_num_ s(236) =< 63*V_ptr-63*V_word_num_ s(237) =< -64*V_word_num_-V_bit_num_+128 s(236) =< -63*V_word_num_+126 s(238) =< -63*V_word_num_-V_bit_num_+126 s(239) =< -V_bit_num_+63 s(240) =< max([s(238),s(232)]) s(241) =< max([s(237),s(233)]) s(242) =< s(236)*(1/63)+1 s(243) =< max([s(239),s(231)]) s(244) =< s(234)*s(240) s(245) =< s(234)*s(241) s(246) =< s(235) s(247) =< max([s(243),s(231)])+s(242)*62+s(242)*63 s(248) =< s(246)*s(236) s(249) =< s(247)+1 s(250) =< s(248)*(64/63) s(251) =< s(248)+s(244) s(251) =< s(246)*s(247) s(252) =< s(250)+s(245) s(252) =< s(246)*s(249) with precondition: [1>=V_word_num_,V_ptr>=1] * Chain [35]: 1*s(256)+3*s(269)+1*s(274)+1*s(275)+3*s(276)+1*s(281)+1*s(282)+2 Such that:s(253) =< 63 s(254) =< 126 s(255) =< 128 s(256) =< V_ptr s(257) =< 2*V_ptr s(258) =< 63*V_ptr s(259) =< -64*V_word_num_+64 s(260) =< -63*V_word_num_ s(261) =< -63*V_word_num_+63 s(262) =< -V_word_num_+1 s(258) =< s(254) s(263) =< max([s(254),s(254)]) s(264) =< max([s(255),s(255)]) s(265) =< s(258)*(1/63)+1 s(266) =< max([s(253),s(253)]) s(267) =< s(256)*s(263) s(268) =< s(256)*s(264) s(269) =< s(257) s(270) =< max([s(266),s(253)])+s(265)*62+s(265)*63 s(271) =< s(269)*s(258) s(272) =< s(270)+1 s(273) =< s(271)*(64/63) s(274) =< s(271)+s(267) s(274) =< s(269)*s(270) s(275) =< s(273)+s(268) s(275) =< s(269)*s(272) s(276) =< s(262) s(277) =< max([s(253),s(253)])+s(276)*62+s(276)*63 s(278) =< s(276)*s(260) s(279) =< s(277)+1 s(280) =< s(278)*(64/63) s(281) =< s(278)+s(261) s(281) =< s(276)*s(277) s(282) =< s(280)+s(259) s(282) =< s(276)*s(279) with precondition: [0>=V_word_num_,V_ptr>=2,V_bit_num_>=64] * Chain [34]: 1*s(286)+3*s(298)+1*s(303)+1*s(304)+1 Such that:s(283) =< 63 s(284) =< 126 s(285) =< 128 s(286) =< V_ptr s(287) =< 2*V_ptr s(288) =< 63*V_ptr s(289) =< -V_bit_num_+63 s(290) =< -V_bit_num_+126 s(291) =< -V_bit_num_+128 s(288) =< s(284) s(292) =< max([s(290),s(284)]) s(293) =< max([s(291),s(285)]) s(294) =< s(288)*(1/63)+1 s(295) =< max([s(289),s(283)]) s(296) =< s(286)*s(292) s(297) =< s(286)*s(293) s(298) =< s(287) s(299) =< max([s(295),s(283)])+s(294)*62+s(294)*63 s(300) =< s(298)*s(288) s(301) =< s(299)+1 s(302) =< s(300)*(64/63) s(303) =< s(300)+s(296) s(303) =< s(298)*s(299) s(304) =< s(302)+s(297) s(304) =< s(298)*s(301) with precondition: [V_ptr>=2,V_word_num_>=2] * Chain [33]: 1*s(310)+3*s(319)+1*s(324)+1*s(325)+3*s(326)+1*s(329)+1*s(330)+3 Such that:s(305) =< 1 s(306) =< 63 s(307) =< 64 s(308) =< 126 s(309) =< 128 s(310) =< V_ptr s(311) =< 2*V_ptr s(312) =< 63*V_ptr s(312) =< s(308) s(313) =< max([s(308),s(308)]) s(314) =< max([s(309),s(309)]) s(315) =< s(312)*(1/63)+1 s(316) =< max([s(306),s(306)]) s(317) =< s(310)*s(313) s(318) =< s(310)*s(314) s(319) =< s(311) s(320) =< max([s(316),s(306)])+s(315)*62+s(315)*63 s(321) =< s(319)*s(312) s(322) =< s(320)+1 s(323) =< s(321)*(64/63) s(324) =< s(321)+s(317) s(324) =< s(319)*s(320) s(325) =< s(323)+s(318) s(325) =< s(319)*s(322) s(326) =< s(305) s(327) =< max([s(306),s(306)])+s(326)*62+s(326)*63 s(328) =< s(327)+1 s(329) =< s(306) s(329) =< s(326)*s(327) s(330) =< s(307) s(330) =< s(326)*s(328) with precondition: [V_ptr>=3,V_word_num_>=2,V_bit_num_>=64] Closed-form bounds of eval_load_mems_start(V_ptr,V_word_num_,V_bit_num_,B): ------------------------------------- * Chain [42] with precondition: [V_ptr=1,V_word_num_=1,V_bit_num_>=64] - Upper bound: 2 - Complexity: constant * Chain [41] with precondition: [V_ptr=1,0>=V_word_num_,V_bit_num_>=64] - Upper bound: (-V_word_num_+1)*(-127*V_word_num_)+2+(-3*V_word_num_+3)+(-64*V_word_num_+64)+(-63*V_word_num_+63) - Complexity: n^2 * Chain [40] with precondition: [V_ptr=1,V_word_num_>=2] - Upper bound: 1 - Complexity: constant * Chain [39] with precondition: [V_ptr=2,V_word_num_>=2,V_bit_num_>=64] - Upper bound: 133 - Complexity: constant * Chain [38] with precondition: [V_word_num_=1,V_ptr>=2,V_bit_num_>=64] - Upper bound: 769*V_ptr+2 - Complexity: n * Chain [37] with precondition: [0>=V_ptr] - Upper bound: 0 - Complexity: constant * Chain [36] with precondition: [1>=V_word_num_,V_ptr>=1] - Upper bound: 6*V_ptr-3*V_word_num_+(max([128,nat(-64*V_word_num_-V_bit_num_+128)])*V_ptr+max([126,nat(-63*V_word_num_-V_bit_num_+126)])*V_ptr+V_ptr)+(254/63*V_ptr-127/63*V_word_num_)*(63*V_ptr-63*V_word_num_) - Complexity: n^2 * Chain [35] with precondition: [0>=V_word_num_,V_ptr>=2,V_bit_num_>=64] - Upper bound: 255*V_ptr+2+(-V_word_num_+1)*(-127*V_word_num_)+514*V_ptr+(-3*V_word_num_+3)+(-64*V_word_num_+64)+(-63*V_word_num_+63) - Complexity: n^2 * Chain [34] with precondition: [V_ptr>=2,V_word_num_>=2] - Upper bound: max([126,nat(-V_bit_num_+126)])*V_ptr+1+max([128,nat(-V_bit_num_+128)])*V_ptr+V_ptr+514*V_ptr - Complexity: n^2 * Chain [33] with precondition: [V_ptr>=3,V_word_num_>=2,V_bit_num_>=64] - Upper bound: 769*V_ptr+133 - Complexity: n ### Maximum cost of eval_load_mems_start(V_ptr,V_word_num_,V_bit_num_,B): max([max([133,127/63*nat(-63*V_word_num_)*nat(-V_word_num_+1)+2+nat(-V_word_num_+1)*3+nat(-64*V_word_num_+64)+nat(-63*V_word_num_+63)]),nat(V_ptr)+max([nat(2*V_ptr)*257+1+max([nat(V_ptr)*max([128,nat(-V_bit_num_+128)])+nat(V_ptr)*max([126,nat(-V_bit_num_+126)]),nat(V_ptr)*126+1+nat(V_ptr)*128+max([131,127/63*nat(-63*V_word_num_)*nat(-V_word_num_+1)+nat(-V_word_num_+1)*3+nat(-64*V_word_num_+64)+nat(-63*V_word_num_+63)])]),nat(V_ptr)*max([128,nat(-64*V_word_num_-V_bit_num_+128)])+nat(V_ptr)*max([126,nat(-63*V_word_num_-V_bit_num_+126)])+nat(2*V_ptr-V_word_num_)*3+127/63*nat(2*V_ptr-V_word_num_)*nat(63*V_ptr-63*V_word_num_)])]) Asymptotic class: n^2 * Total analysis performed in 505 ms.