/export/starexec/sandbox2/solver/bin/starexec_run_C /export/starexec/sandbox2/benchmark/theBenchmark.c /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?,O(n^1)) Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive : [eval_s_SFD_process_8/5,eval_s_SFD_process_9/6,eval_s_SFD_process_bb5_in/4,eval_s_SFD_process_bb6_in/4] 1. recursive : [eval_s_SFD_process_1/5,eval_s_SFD_process_2/6,eval_s_SFD_process_4/7,eval_s_SFD_process_5/8,eval_s_SFD_process_bb1_in/4,eval_s_SFD_process_bb2_in/4,eval_s_SFD_process_bb3_in/6,eval_s_SFD_process_bb4_in/6,eval_s_SFD_process_bb5_in_loop_cont/9,eval_s_SFD_process_bb7_in/8] 2. non_recursive : [eval_s_SFD_process_stop/1] 3. non_recursive : [eval_s_SFD_process_bb8_in/1] 4. non_recursive : [eval_s_SFD_process_bb1_in_loop_cont/2] 5. non_recursive : [eval_s_SFD_process_bb0_in/4] 6. non_recursive : [eval_s_SFD_process_start/4] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into eval_s_SFD_process_bb5_in/4 1. SCC is partially evaluated into eval_s_SFD_process_bb1_in/4 2. SCC is completely evaluated into other SCCs 3. SCC is completely evaluated into other SCCs 4. SCC is completely evaluated into other SCCs 5. SCC is partially evaluated into eval_s_SFD_process_bb0_in/4 6. SCC is partially evaluated into eval_s_SFD_process_start/4 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations eval_s_SFD_process_bb5_in/4 * CE 9 is refined into CE [11] * CE 10 is refined into CE [12] * CE 8 is refined into CE [13] ### Cost equations --> "Loop" of eval_s_SFD_process_bb5_in/4 * CEs [13] --> Loop 11 * CEs [11] --> Loop 12 * CEs [12] --> Loop 13 ### Ranking functions of CR eval_s_SFD_process_bb5_in(V__2,B,C,D) * RF of phase [11]: [V__2] #### Partial ranking functions of CR eval_s_SFD_process_bb5_in(V__2,B,C,D) * Partial RF of phase [11]: - RF of loop [11:1]: V__2 ### Specialization of cost equations eval_s_SFD_process_bb1_in/4 * CE 7 is refined into CE [14] * CE 3 is refined into CE [15,16,17] * CE 4 is refined into CE [18] * CE 6 is refined into CE [19] * CE 5 is refined into CE [20] ### Cost equations --> "Loop" of eval_s_SFD_process_bb1_in/4 * CEs [17] --> Loop 14 * CEs [18] --> Loop 15 * CEs [19] --> Loop 16 * CEs [16] --> Loop 17 * CEs [15] --> Loop 18 * CEs [20] --> Loop 19 * CEs [14] --> Loop 20 ### Ranking functions of CR eval_s_SFD_process_bb1_in(V_rlimit,V__01,V__0,B) #### Partial ranking functions of CR eval_s_SFD_process_bb1_in(V_rlimit,V__01,V__0,B) * Partial RF of phase [14,15,16,17,18,19]: - RF of loop [14:1]: V__01/2-1/2 depends on loops [16:1,19:1] - RF of loop [15:1,16:1,19:1]: V_rlimit-V__0 - RF of loop [17:1,18:1]: V__01 depends on loops [16:1,19:1] ### Specialization of cost equations eval_s_SFD_process_bb0_in/4 * CE 2 is refined into CE [21,22] ### Cost equations --> "Loop" of eval_s_SFD_process_bb0_in/4 * CEs [21] --> Loop 21 * CEs [22] --> Loop 22 ### Ranking functions of CR eval_s_SFD_process_bb0_in(V_p,V_rlimit,V_match,B) #### Partial ranking functions of CR eval_s_SFD_process_bb0_in(V_p,V_rlimit,V_match,B) ### Specialization of cost equations eval_s_SFD_process_start/4 * CE 1 is refined into CE [23,24] ### Cost equations --> "Loop" of eval_s_SFD_process_start/4 * CEs [24] --> Loop 23 * CEs [23] --> Loop 24 ### Ranking functions of CR eval_s_SFD_process_start(V_p,V_rlimit,V_match,B) #### Partial ranking functions of CR eval_s_SFD_process_start(V_p,V_rlimit,V_match,B) Computing Bounds ===================================== #### Cost of chains of eval_s_SFD_process_bb5_in(V__2,B,C,D): * Chain [[11],13]: 1*it(11)+0 Such that:it(11) =< V__2 with precondition: [B=2,C=0,D=0,V__2>=1] * Chain [[11],12]: 1*it(11)+0 Such that:it(11) =< V__2-D with precondition: [B=2,C=D+1,C>=1,V__2>=C+1] * Chain [12]: 0 with precondition: [B=2,V__2=C,V__2=D+1,V__2>=1] #### Cost of chains of eval_s_SFD_process_bb1_in(V_rlimit,V__01,V__0,B): * Chain [[14,15,16,17,18,19],20]: 1*it(14)+3*it(15)+2*it(17)+1*s(5)+1*s(6)+0 Such that:aux(13) =< V__01 aux(2) =< V__01/2 aux(14) =< V_rlimit-V__0 it(15) =< aux(14) aux(5) =< max([aux(13),0])+it(15) it(17) =< it(15)+aux(13) s(5) =< it(15)+aux(13) s(6) =< it(15)+aux(13) it(14) =< aux(14)+it(15)*(1/2)+aux(2) aux(9) =< aux(5) s(5) =< it(14)*aux(5) s(6) =< it(17)*aux(9) with precondition: [B=3,V_rlimit>=V__0+1] * Chain [20]: 0 with precondition: [B=3,V__0>=V_rlimit] #### Cost of chains of eval_s_SFD_process_bb0_in(V_p,V_rlimit,V_match,B): * Chain [22]: 3*s(10)+2*s(12)+1*s(13)+1*s(14)+1*s(15)+0 Such that:s(9) =< -V_p+V_rlimit s(7) =< V_match s(8) =< V_match/2 s(10) =< s(9) s(11) =< max([s(7),0])+s(10) s(12) =< s(10)+s(7) s(13) =< s(10)+s(7) s(14) =< s(10)+s(7) s(15) =< s(9)+s(10)*(1/2)+s(8) s(16) =< s(11) s(13) =< s(15)*s(11) s(14) =< s(12)*s(16) with precondition: [V_rlimit>=V_p+1] * Chain [21]: 0 with precondition: [V_p>=V_rlimit] #### Cost of chains of eval_s_SFD_process_start(V_p,V_rlimit,V_match,B): * Chain [24]: 3*s(20)+2*s(22)+1*s(23)+1*s(24)+1*s(25)+0 Such that:s(17) =< -V_p+V_rlimit s(18) =< V_match s(19) =< V_match/2 s(20) =< s(17) s(21) =< max([s(18),0])+s(20) s(22) =< s(20)+s(18) s(23) =< s(20)+s(18) s(24) =< s(20)+s(18) s(25) =< s(17)+s(20)*(1/2)+s(19) s(26) =< s(21) s(23) =< s(25)*s(21) s(24) =< s(22)*s(26) with precondition: [V_rlimit>=V_p+1] * Chain [23]: 0 with precondition: [V_p>=V_rlimit] Closed-form bounds of eval_s_SFD_process_start(V_p,V_rlimit,V_match,B): ------------------------------------- * Chain [24] with precondition: [V_rlimit>=V_p+1] - Upper bound: -17/2*V_p+17/2*V_rlimit+nat(V_match)*4+nat(V_match/2) - Complexity: n * Chain [23] with precondition: [V_p>=V_rlimit] - Upper bound: 0 - Complexity: constant ### Maximum cost of eval_s_SFD_process_start(V_p,V_rlimit,V_match,B): 17/2*nat(-V_p+V_rlimit)+nat(V_match)*4+nat(V_match/2) Asymptotic class: n * Total analysis performed in 252 ms.