/export/starexec/sandbox2/solver/bin/starexec_run_c_complexity /export/starexec/sandbox2/benchmark/theBenchmark.c /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/output/output_files/bench.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 74 ms] (2) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval_speedSingleSingle_start(v_n, v_x.0) -> Com_1(eval_speedSingleSingle_bb0_in(v_n, v_x.0)) :|: TRUE eval_speedSingleSingle_bb0_in(v_n, v_x.0) -> Com_1(eval_speedSingleSingle_bb1_in(v_n, 0)) :|: TRUE eval_speedSingleSingle_bb1_in(v_n, v_x.0) -> Com_1(eval_speedSingleSingle_bb2_in(v_n, v_x.0)) :|: v_x.0 < v_n eval_speedSingleSingle_bb1_in(v_n, v_x.0) -> Com_1(eval_speedSingleSingle_bb3_in(v_n, v_x.0)) :|: v_x.0 >= v_n eval_speedSingleSingle_bb2_in(v_n, v_x.0) -> Com_1(eval_speedSingleSingle_0(v_n, v_x.0)) :|: TRUE eval_speedSingleSingle_0(v_n, v_x.0) -> Com_2(eval_nondet_start(v_n, v_x.0), eval_speedSingleSingle_1(v_n, v_x.0)) :|: TRUE eval_speedSingleSingle_1(v_n, v_x.0) -> Com_1(eval_speedSingleSingle_bb1_in(v_n, v_x.0 + 1)) :|: TRUE eval_speedSingleSingle_bb3_in(v_n, v_x.0) -> Com_1(eval_speedSingleSingle_stop(v_n, v_x.0)) :|: TRUE The start-symbols are:[eval_speedSingleSingle_start_2] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 16*ar_1 + 6) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) evalspeedSingleSinglestart(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb0in(ar_0, ar_1)) (Comp: ?, Cost: 1) evalspeedSingleSinglebb0in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(0, ar_1)) (Comp: ?, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb2in(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] (Comp: ?, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] (Comp: ?, Cost: 1) evalspeedSingleSinglebb2in(ar_0, ar_1) -> Com_1(evalspeedSingleSingle0(ar_0, ar_1)) (Comp: ?, Cost: 1) evalspeedSingleSingle0(ar_0, ar_1) -> Com_2(evalnondetstart(ar_0, ar_1), evalspeedSingleSingle1(ar_0, ar_1)) (Comp: ?, Cost: 1) evalspeedSingleSingle1(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(ar_0 + 1, ar_1)) (Comp: ?, Cost: 1) evalspeedSingleSinglebb3in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestop(ar_0, ar_1)) (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestart(ar_0, ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) evalspeedSingleSinglestart(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb0in(ar_0, ar_1)) (Comp: 1, Cost: 1) evalspeedSingleSinglebb0in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(0, ar_1)) (Comp: ?, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb2in(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] (Comp: ?, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] (Comp: ?, Cost: 1) evalspeedSingleSinglebb2in(ar_0, ar_1) -> Com_1(evalspeedSingleSingle0(ar_0, ar_1)) (Comp: ?, Cost: 1) evalspeedSingleSingle0(ar_0, ar_1) -> Com_2(evalnondetstart(ar_0, ar_1), evalspeedSingleSingle1(ar_0, ar_1)) (Comp: ?, Cost: 1) evalspeedSingleSingle1(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(ar_0 + 1, ar_1)) (Comp: ?, Cost: 1) evalspeedSingleSinglebb3in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestop(ar_0, ar_1)) (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestart(ar_0, ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalspeedSingleSinglestart) = 2 Pol(evalspeedSingleSinglebb0in) = 2 Pol(evalspeedSingleSinglebb1in) = 2 Pol(evalspeedSingleSinglebb2in) = 2 Pol(evalspeedSingleSinglebb3in) = 1 Pol(evalspeedSingleSingle0) = 2 Pol(evalnondetstart) = 0 Pol(evalspeedSingleSingle1) = 2 Pol(evalspeedSingleSinglestop) = 0 Pol(koat_start) = 2 orients all transitions weakly and the transitions evalspeedSingleSinglebb3in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestop(ar_0, ar_1)) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) evalspeedSingleSinglestart(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb0in(ar_0, ar_1)) (Comp: 1, Cost: 1) evalspeedSingleSinglebb0in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(0, ar_1)) (Comp: ?, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb2in(ar_0, ar_1)) [ ar_1 >= ar_0 + 1 ] (Comp: 2, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb3in(ar_0, ar_1)) [ ar_0 >= ar_1 ] (Comp: ?, Cost: 1) evalspeedSingleSinglebb2in(ar_0, ar_1) -> Com_1(evalspeedSingleSingle0(ar_0, ar_1)) (Comp: ?, Cost: 1) evalspeedSingleSingle0(ar_0, ar_1) -> Com_2(evalnondetstart(ar_0, ar_1), evalspeedSingleSingle1(ar_0, ar_1)) (Comp: ?, Cost: 1) evalspeedSingleSingle1(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(ar_0 + 1, ar_1)) (Comp: 2, Cost: 1) evalspeedSingleSinglebb3in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestop(ar_0, ar_1)) (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestart(ar_0, ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Applied AI with 'oct' on problem 3 to obtain the following invariants: For symbol evalspeedSingleSingle0: X_2 - 1 >= 0 /\ X_1 + X_2 - 1 >= 0 /\ -X_1 + X_2 - 1 >= 0 /\ X_1 >= 0 For symbol evalspeedSingleSingle1: X_2 - 1 >= 0 /\ X_1 + X_2 - 1 >= 0 /\ -X_1 + X_2 - 1 >= 0 /\ X_1 >= 0 For symbol evalspeedSingleSinglebb1in: X_1 >= 0 For symbol evalspeedSingleSinglebb2in: X_2 - 1 >= 0 /\ X_1 + X_2 - 1 >= 0 /\ -X_1 + X_2 - 1 >= 0 /\ X_1 >= 0 For symbol evalspeedSingleSinglebb3in: X_1 - X_2 >= 0 /\ X_1 >= 0 This yielded the following problem: 4: T: (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestart(ar_0, ar_1)) [ 0 <= 0 ] (Comp: 2, Cost: 1) evalspeedSingleSinglebb3in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestop(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 >= 0 ] (Comp: ?, Cost: 1) evalspeedSingleSingle1(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(ar_0 + 1, ar_1)) [ ar_1 - 1 >= 0 /\ ar_0 + ar_1 - 1 >= 0 /\ -ar_0 + ar_1 - 1 >= 0 /\ ar_0 >= 0 ] (Comp: ?, Cost: 1) evalspeedSingleSingle0(ar_0, ar_1) -> Com_2(evalnondetstart(ar_0, ar_1), evalspeedSingleSingle1(ar_0, ar_1)) [ ar_1 - 1 >= 0 /\ ar_0 + ar_1 - 1 >= 0 /\ -ar_0 + ar_1 - 1 >= 0 /\ ar_0 >= 0 ] (Comp: ?, Cost: 1) evalspeedSingleSinglebb2in(ar_0, ar_1) -> Com_1(evalspeedSingleSingle0(ar_0, ar_1)) [ ar_1 - 1 >= 0 /\ ar_0 + ar_1 - 1 >= 0 /\ -ar_0 + ar_1 - 1 >= 0 /\ ar_0 >= 0 ] (Comp: 2, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb3in(ar_0, ar_1)) [ ar_0 >= 0 /\ ar_0 >= ar_1 ] (Comp: ?, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb2in(ar_0, ar_1)) [ ar_0 >= 0 /\ ar_1 >= ar_0 + 1 ] (Comp: 1, Cost: 1) evalspeedSingleSinglebb0in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(0, ar_1)) (Comp: 1, Cost: 1) evalspeedSingleSinglestart(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb0in(ar_0, ar_1)) start location: koat_start leaf cost: 0 A polynomial rank function with Pol(koat_start) = 4*V_2 Pol(evalspeedSingleSinglestart) = 4*V_2 Pol(evalspeedSingleSinglebb3in) = -4*V_1 + 4*V_2 Pol(evalspeedSingleSinglestop) = -4*V_1 + 4*V_2 Pol(evalspeedSingleSingle1) = -4*V_1 + 4*V_2 - 3 Pol(evalspeedSingleSinglebb1in) = -4*V_1 + 4*V_2 Pol(evalspeedSingleSingle0) = -4*V_1 + 4*V_2 - 2 Pol(evalnondetstart) = -4*V_1 Pol(evalspeedSingleSinglebb2in) = -4*V_1 + 4*V_2 - 1 Pol(evalspeedSingleSinglebb0in) = 4*V_2 orients all transitions weakly and the transitions evalspeedSingleSinglebb2in(ar_0, ar_1) -> Com_1(evalspeedSingleSingle0(ar_0, ar_1)) [ ar_1 - 1 >= 0 /\ ar_0 + ar_1 - 1 >= 0 /\ -ar_0 + ar_1 - 1 >= 0 /\ ar_0 >= 0 ] evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb2in(ar_0, ar_1)) [ ar_0 >= 0 /\ ar_1 >= ar_0 + 1 ] evalspeedSingleSingle1(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(ar_0 + 1, ar_1)) [ ar_1 - 1 >= 0 /\ ar_0 + ar_1 - 1 >= 0 /\ -ar_0 + ar_1 - 1 >= 0 /\ ar_0 >= 0 ] evalspeedSingleSingle0(ar_0, ar_1) -> Com_2(evalnondetstart(ar_0, ar_1), evalspeedSingleSingle1(ar_0, ar_1)) [ ar_1 - 1 >= 0 /\ ar_0 + ar_1 - 1 >= 0 /\ -ar_0 + ar_1 - 1 >= 0 /\ ar_0 >= 0 ] strictly and produces the following problem: 5: T: (Comp: 1, Cost: 0) koat_start(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestart(ar_0, ar_1)) [ 0 <= 0 ] (Comp: 2, Cost: 1) evalspeedSingleSinglebb3in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglestop(ar_0, ar_1)) [ ar_0 - ar_1 >= 0 /\ ar_0 >= 0 ] (Comp: 4*ar_1, Cost: 1) evalspeedSingleSingle1(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(ar_0 + 1, ar_1)) [ ar_1 - 1 >= 0 /\ ar_0 + ar_1 - 1 >= 0 /\ -ar_0 + ar_1 - 1 >= 0 /\ ar_0 >= 0 ] (Comp: 4*ar_1, Cost: 1) evalspeedSingleSingle0(ar_0, ar_1) -> Com_2(evalnondetstart(ar_0, ar_1), evalspeedSingleSingle1(ar_0, ar_1)) [ ar_1 - 1 >= 0 /\ ar_0 + ar_1 - 1 >= 0 /\ -ar_0 + ar_1 - 1 >= 0 /\ ar_0 >= 0 ] (Comp: 4*ar_1, Cost: 1) evalspeedSingleSinglebb2in(ar_0, ar_1) -> Com_1(evalspeedSingleSingle0(ar_0, ar_1)) [ ar_1 - 1 >= 0 /\ ar_0 + ar_1 - 1 >= 0 /\ -ar_0 + ar_1 - 1 >= 0 /\ ar_0 >= 0 ] (Comp: 2, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb3in(ar_0, ar_1)) [ ar_0 >= 0 /\ ar_0 >= ar_1 ] (Comp: 4*ar_1, Cost: 1) evalspeedSingleSinglebb1in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb2in(ar_0, ar_1)) [ ar_0 >= 0 /\ ar_1 >= ar_0 + 1 ] (Comp: 1, Cost: 1) evalspeedSingleSinglebb0in(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb1in(0, ar_1)) (Comp: 1, Cost: 1) evalspeedSingleSinglestart(ar_0, ar_1) -> Com_1(evalspeedSingleSinglebb0in(ar_0, ar_1)) start location: koat_start leaf cost: 0 Complexity upper bound 16*ar_1 + 6 Time: 0.130 sec (SMT: 0.115 sec) ---------------------------------------- (2) BOUNDS(1, n^1)