/export/starexec/sandbox2/solver/bin/starexec_run_c_complexity /export/starexec/sandbox2/benchmark/theBenchmark.c /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/output/output_files/bench.koat # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 84 ms] (2) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval_foo_start(v_.0, v_.01, v_.02, v_i, v_j, v_k, v_t) -> Com_1(eval_foo_bb0_in(v_.0, v_.01, v_.02, v_i, v_j, v_k, v_t)) :|: TRUE eval_foo_bb0_in(v_.0, v_.01, v_.02, v_i, v_j, v_k, v_t) -> Com_1(eval_foo_bb1_in(v_i, v_j, v_k, v_i, v_j, v_k, v_t)) :|: TRUE eval_foo_bb1_in(v_.0, v_.01, v_.02, v_i, v_j, v_k, v_t) -> Com_1(eval_foo_bb2_in(v_.0, v_.01, v_.02, v_i, v_j, v_k, v_t)) :|: v_.0 <= 100 && v_.01 <= v_.02 eval_foo_bb1_in(v_.0, v_.01, v_.02, v_i, v_j, v_k, v_t) -> Com_1(eval_foo_bb3_in(v_.0, v_.01, v_.02, v_i, v_j, v_k, v_t)) :|: v_.0 > 100 eval_foo_bb1_in(v_.0, v_.01, v_.02, v_i, v_j, v_k, v_t) -> Com_1(eval_foo_bb3_in(v_.0, v_.01, v_.02, v_i, v_j, v_k, v_t)) :|: v_.01 > v_.02 eval_foo_bb2_in(v_.0, v_.01, v_.02, v_i, v_j, v_k, v_t) -> Com_1(eval_foo_bb1_in(v_.01, v_.01 + 1, v_.02 - 1, v_i, v_j, v_k, v_t)) :|: TRUE eval_foo_bb3_in(v_.0, v_.01, v_.02, v_i, v_j, v_k, v_t) -> Com_1(eval_foo_stop(v_.0, v_.01, v_.02, v_i, v_j, v_k, v_t)) :|: TRUE The start-symbols are:[eval_foo_start_7] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 2*ar_3 + 2*ar_5 + 12) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) (Comp: ?, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_5, ar_5)) (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 100 >= ar_0 /\ ar_4 >= ar_2 ] (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ ar_0 >= 101 ] (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ ar_2 >= ar_4 + 1 ] (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb1in(ar_2, ar_1, ar_2 + 1, ar_3, ar_4 - 1, ar_5)) (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_5, ar_5)) (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 100 >= ar_0 /\ ar_4 >= ar_2 ] (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ ar_0 >= 101 ] (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ ar_2 >= ar_4 + 1 ] (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb1in(ar_2, ar_1, ar_2 + 1, ar_3, ar_4 - 1, ar_5)) (Comp: ?, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalfoostart) = 2 Pol(evalfoobb0in) = 2 Pol(evalfoobb1in) = 2 Pol(evalfoobb2in) = 2 Pol(evalfoobb3in) = 1 Pol(evalfoostop) = 0 Pol(koat_start) = 2 orients all transitions weakly and the transitions evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ ar_2 >= ar_4 + 1 ] evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ ar_0 >= 101 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_5, ar_5)) (Comp: ?, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 100 >= ar_0 /\ ar_4 >= ar_2 ] (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ ar_0 >= 101 ] (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ ar_2 >= ar_4 + 1 ] (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb1in(ar_2, ar_1, ar_2 + 1, ar_3, ar_4 - 1, ar_5)) (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalfoostart) = -V_4 + V_6 + 2 Pol(evalfoobb0in) = -V_4 + V_6 + 2 Pol(evalfoobb1in) = -V_3 + V_5 + 2 Pol(evalfoobb2in) = -V_3 + V_5 Pol(evalfoobb3in) = -V_3 + V_5 Pol(evalfoostop) = -V_3 + V_5 Pol(koat_start) = -V_4 + V_6 + 2 orients all transitions weakly and the transition evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 100 >= ar_0 /\ ar_4 >= ar_2 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_5, ar_5)) (Comp: ar_3 + ar_5 + 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 100 >= ar_0 /\ ar_4 >= ar_2 ] (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ ar_0 >= 101 ] (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ ar_2 >= ar_4 + 1 ] (Comp: ?, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb1in(ar_2, ar_1, ar_2 + 1, ar_3, ar_4 - 1, ar_5)) (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 4 produces the following problem: 5: T: (Comp: 1, Cost: 1) evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) (Comp: 1, Cost: 1) evalfoobb0in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb1in(ar_1, ar_1, ar_3, ar_3, ar_5, ar_5)) (Comp: ar_3 + ar_5 + 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 100 >= ar_0 /\ ar_4 >= ar_2 ] (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ ar_0 >= 101 ] (Comp: 2, Cost: 1) evalfoobb1in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ ar_2 >= ar_4 + 1 ] (Comp: ar_3 + ar_5 + 2, Cost: 1) evalfoobb2in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoobb1in(ar_2, ar_1, ar_2 + 1, ar_3, ar_4 - 1, ar_5)) (Comp: 2, Cost: 1) evalfoobb3in(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoostop(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) (Comp: 1, Cost: 0) koat_start(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5) -> Com_1(evalfoostart(ar_0, ar_1, ar_2, ar_3, ar_4, ar_5)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 2*ar_3 + 2*ar_5 + 12 Time: 0.086 sec (SMT: 0.073 sec) ---------------------------------------- (2) BOUNDS(1, n^1)